Low-Complexity Intra Prediction Refinements for Video Coding

Xin Zhao, V. Seregin, A. Said, Kai Zhang, Hilmi E. Egilmez, M. Karczewicz
{"title":"Low-Complexity Intra Prediction Refinements for Video Coding","authors":"Xin Zhao, V. Seregin, A. Said, Kai Zhang, Hilmi E. Egilmez, M. Karczewicz","doi":"10.1109/PCS.2018.8456305","DOIUrl":null,"url":null,"abstract":"In existing video coding standards such as H.264/AVC and HEVC, the intra prediction is typically derived using fixed, symmetric prediction filters along the prediction direction, e.g., in planar mode, top-right and bottom-left samples are predicted using symmetric prediction filters. However, in case ofasymmetric availability of neighboring reference samples, the performance of intra prediction filters designed in HEVC may not be optimal. To further refine the intra prediction and achieve higher accuracy of prediction samples, this paper proposes low-complexity refinements over HEVC intra prediction, which are applied on frequently used planar, DC, horizontal and vertical modes. The proposed method only requires simple addition and bit-shift operations on top of HEVC’s intra prediction implementation. Experimental results show that, an average of 0.7% coding gain is achieved for intra coding with no increase in run-time complexity.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In existing video coding standards such as H.264/AVC and HEVC, the intra prediction is typically derived using fixed, symmetric prediction filters along the prediction direction, e.g., in planar mode, top-right and bottom-left samples are predicted using symmetric prediction filters. However, in case ofasymmetric availability of neighboring reference samples, the performance of intra prediction filters designed in HEVC may not be optimal. To further refine the intra prediction and achieve higher accuracy of prediction samples, this paper proposes low-complexity refinements over HEVC intra prediction, which are applied on frequently used planar, DC, horizontal and vertical modes. The proposed method only requires simple addition and bit-shift operations on top of HEVC’s intra prediction implementation. Experimental results show that, an average of 0.7% coding gain is achieved for intra coding with no increase in run-time complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频编码的低复杂度内部预测改进
在现有的视频编码标准(如H.264/AVC和HEVC)中,通常使用沿预测方向的固定对称预测滤波器推导出帧内预测,例如,在平面模式下,使用对称预测滤波器预测右上和左下的样本。然而,在邻近参考样本可用性不对称的情况下,HEVC中设计的内预测滤波器的性能可能不是最优的。为了进一步细化帧内预测,提高预测样本的精度,本文提出了HEVC帧内预测的低复杂度细化方法,分别应用于常用的平面、直流、水平和垂直模式。该方法只需要在HEVC的帧内预测实现基础上进行简单的加法和位移操作。实验结果表明,在不增加运行时复杂度的情况下,帧内编码的平均编码增益为0.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future Video Coding Technologies: A Performance Evaluation of AV1, JEM, VP9, and HM Joint Optimization of Rate, Distortion, and Maximum Absolute Error for Compression of Medical Volumes Using HEVC Intra Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme Detecting Source Video Artifacts with Supervised Sparse Filters Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1