{"title":"Characterization of Al-foil/p -4H-SiC SBDs Fabricated by DW with Variation of Process Conditions","authors":"Mehadi Hasan Ziko, A. Koel, T. Rang","doi":"10.1109/WiPDAAsia49671.2020.9360265","DOIUrl":null,"url":null,"abstract":"Silicon carbide (SiC) is a wide-bandgap (WBG) semiconductor material with high thermal conductivity and radiation harness that have good potential to develop a new generation of power devices for operating at the higher temperature, high frequency, high power applications. In this paper, various manufacturing process (MP) parameters of diffusion welding (DW) p-type 4H-SiC Schottky contact developments are studied. Deposition temperature and pressure influence the DW Schottky barrier diodes (SBD) electrical characteristics and observed their barrier inhomogeneity. The lower doping concentration in the epilayer improves the Schottky contact characteristics with the same MP parameters. Additionally, Schottky contact with DW deposition technology shows better electrical contact compare to ion-sputtering deposition technique. Furthermore, temperature dependency of forward current-voltage (I–V), capacitance-voltage (C–V), and barrier height correspond to ideality factors measurements of DW two-MP parameters shows that there are higher barrier inhomogeneities at the metal and SiC interface compare to one-MP parameters for Aluminum (Al)-foil/p 4H–SiC SBDs.","PeriodicalId":432666,"journal":{"name":"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WiPDAAsia49671.2020.9360265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon carbide (SiC) is a wide-bandgap (WBG) semiconductor material with high thermal conductivity and radiation harness that have good potential to develop a new generation of power devices for operating at the higher temperature, high frequency, high power applications. In this paper, various manufacturing process (MP) parameters of diffusion welding (DW) p-type 4H-SiC Schottky contact developments are studied. Deposition temperature and pressure influence the DW Schottky barrier diodes (SBD) electrical characteristics and observed their barrier inhomogeneity. The lower doping concentration in the epilayer improves the Schottky contact characteristics with the same MP parameters. Additionally, Schottky contact with DW deposition technology shows better electrical contact compare to ion-sputtering deposition technique. Furthermore, temperature dependency of forward current-voltage (I–V), capacitance-voltage (C–V), and barrier height correspond to ideality factors measurements of DW two-MP parameters shows that there are higher barrier inhomogeneities at the metal and SiC interface compare to one-MP parameters for Aluminum (Al)-foil/p 4H–SiC SBDs.