F. Al-Shahrour, Javier Herrero, Á. Mateos, J. Santoyo, R. Díaz-Uriarte, J. Dopazo
{"title":"Using gene ontology on genome-scale studies to find significant associations of biologically relevant terms to groups of genes","authors":"F. Al-Shahrour, Javier Herrero, Á. Mateos, J. Santoyo, R. Díaz-Uriarte, J. Dopazo","doi":"10.1109/NNSP.2003.1318003","DOIUrl":null,"url":null,"abstract":"The analysis of genome-scale data from different high throughput techniques usually involves the grouping of genes based on experimental criteria. These groups are a consequence of the biological roles the genes are playing within the cell. Establishing which of these groups are functionally important is essential. Gene ontology terms provide a specialised vocabulary to describe the relevant biological properties of genes. We used a simple procedure to extract terms that are significantly over or under-represented in sets of genes within the context of a genome-scale experiment. Said procedure, which takes the multiple-testing nature of the statistical contrast into account, has been implemented as a Web application, FatiGO, allowing for easy and interactive querying. Several examples demonstrate its application and the type of information that can be extracted. Although a number of genes still lack gene ontology annotations, the results were informative enough to characterise the biological processes in the systems analysed.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The analysis of genome-scale data from different high throughput techniques usually involves the grouping of genes based on experimental criteria. These groups are a consequence of the biological roles the genes are playing within the cell. Establishing which of these groups are functionally important is essential. Gene ontology terms provide a specialised vocabulary to describe the relevant biological properties of genes. We used a simple procedure to extract terms that are significantly over or under-represented in sets of genes within the context of a genome-scale experiment. Said procedure, which takes the multiple-testing nature of the statistical contrast into account, has been implemented as a Web application, FatiGO, allowing for easy and interactive querying. Several examples demonstrate its application and the type of information that can be extracted. Although a number of genes still lack gene ontology annotations, the results were informative enough to characterise the biological processes in the systems analysed.