S. Lee, J. Cho, S. W. Lee, M. Zaman, F. Ayazi, K. Najafi
{"title":"A Low-Power Oven-Controlled Vacuum Package Technology for High-Performance MEMS","authors":"S. Lee, J. Cho, S. W. Lee, M. Zaman, F. Ayazi, K. Najafi","doi":"10.1109/MEMSYS.2009.4805492","DOIUrl":null,"url":null,"abstract":"This paper presents a generic vacuum packaging technology for environment-resistant MEMS devices. This packaging approach simultaneously provides low-power oven-controlled thermal environment and vibration isolation using an isolation platform. The oven-controlled structure is thermally isolated from the environment by crab-leg suspensions made out of a 100 ¿m-thick glass wafer, an anti-radiation shield, and vacuum encapsulation. Performance is evaluated by packaging Pirani gauges and mode-matched tuning fork gyroscopes (M2-TFGs). The package has maintained vacuum pressure of ~6 mTorr for ~1 year. A packaged M2-TFG shows a high-Q mode-matched operation (Q~65,000) at a constant temperature of -5 °C. Allan variance analysis displays an estimated angle random walk (ARW) of 0.012 °/¿hr and a bias instability value of 0.55 °/hr at a constant -5 °C. Drive frequency stability of 0.22 ppm/°C is obtained using a compensated oven-control approach. Low power consumption of 33 mW for oven-control at 80 °C is demonstrated when the environment temperature is -30 °C.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2009.4805492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
This paper presents a generic vacuum packaging technology for environment-resistant MEMS devices. This packaging approach simultaneously provides low-power oven-controlled thermal environment and vibration isolation using an isolation platform. The oven-controlled structure is thermally isolated from the environment by crab-leg suspensions made out of a 100 ¿m-thick glass wafer, an anti-radiation shield, and vacuum encapsulation. Performance is evaluated by packaging Pirani gauges and mode-matched tuning fork gyroscopes (M2-TFGs). The package has maintained vacuum pressure of ~6 mTorr for ~1 year. A packaged M2-TFG shows a high-Q mode-matched operation (Q~65,000) at a constant temperature of -5 °C. Allan variance analysis displays an estimated angle random walk (ARW) of 0.012 °/¿hr and a bias instability value of 0.55 °/hr at a constant -5 °C. Drive frequency stability of 0.22 ppm/°C is obtained using a compensated oven-control approach. Low power consumption of 33 mW for oven-control at 80 °C is demonstrated when the environment temperature is -30 °C.