Design and Implementation of NPC AI based on Genetic Algorithm and BP Neural Network

Meili Zhu, Lili Feng
{"title":"Design and Implementation of NPC AI based on Genetic Algorithm and BP Neural Network","authors":"Meili Zhu, Lili Feng","doi":"10.1145/3547578.3547604","DOIUrl":null,"url":null,"abstract":"In real game scenes, there may be a problem that it is impossible to collect a large amount of data to train NPC's correct behavior. This paper implements a method of training the neural networks to control game NPC behavior based on an improved genetic algorithm. This method optimizes the weights of the fixed network structure through the genetic algorithm, realizes the self-evolution of the neural network, and improves the fitness function and the selection and crossover mutation method in the traditional genetic algorithm, so as to be suitable for game production. Testing in two real game scenes shows that game NPC can acquire intelligent behavior capabilities using this algorithm.","PeriodicalId":381600,"journal":{"name":"Proceedings of the 14th International Conference on Computer Modeling and Simulation","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3547578.3547604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In real game scenes, there may be a problem that it is impossible to collect a large amount of data to train NPC's correct behavior. This paper implements a method of training the neural networks to control game NPC behavior based on an improved genetic algorithm. This method optimizes the weights of the fixed network structure through the genetic algorithm, realizes the self-evolution of the neural network, and improves the fitness function and the selection and crossover mutation method in the traditional genetic algorithm, so as to be suitable for game production. Testing in two real game scenes shows that game NPC can acquire intelligent behavior capabilities using this algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法和BP神经网络的NPC AI设计与实现
在真实的游戏场景中,可能存在无法收集大量数据来训练NPC正确行为的问题。本文实现了一种基于改进遗传算法的神经网络控制游戏NPC行为的训练方法。该方法通过遗传算法对固定网络结构的权值进行优化,实现神经网络的自进化,并对传统遗传算法中的适应度函数和选择与交叉突变方法进行改进,使其适合于博弈生成。两个真实游戏场景的测试表明,使用该算法,游戏NPC可以获得智能行为能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multi-Agent-based Simulation Model for Operations in the Automated Container Terminal with a U-Shaped Layout Blood Damage Analysis of ECMO Centrifugal Pump Based on CFD Using Artificial Intelligence Expert Service System to Solve Power Resource Scheduling Problem A Model Based on Survival-based Credit Risk Assessment System of SMEs Simulation and Test of Nozzle Optimization of Residual Film Barrier Device based on Fluent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1