Ring-LWE Based Face Encryption and Decryption System on a GPU

T. Tan, Yujin Hyun, Jisu Kim, D. Choi, Hanho Lee
{"title":"Ring-LWE Based Face Encryption and Decryption System on a GPU","authors":"T. Tan, Yujin Hyun, Jisu Kim, D. Choi, Hanho Lee","doi":"10.1109/ISOCC47750.2019.9078466","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method to implement ring learning with errors (ring-LWE) cryptography for video-based face encryption and decryption on a graphics processing unit (GPU). By conducting ring arithmetic operations in parallel on a GPU, the processing time of these operations is significantly reduced. Consequently, ring-LWE encryption and decryption operations are remarkably improved. The simulation results conducted on GPU and CPU platforms using CUDA C++ show that the ring-LWE based face encryption and decryption operations implemented on a GPU are approximately 100 times faster than that implemented on a CPU.","PeriodicalId":113802,"journal":{"name":"2019 International SoC Design Conference (ISOCC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC47750.2019.9078466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a novel method to implement ring learning with errors (ring-LWE) cryptography for video-based face encryption and decryption on a graphics processing unit (GPU). By conducting ring arithmetic operations in parallel on a GPU, the processing time of these operations is significantly reduced. Consequently, ring-LWE encryption and decryption operations are remarkably improved. The simulation results conducted on GPU and CPU platforms using CUDA C++ show that the ring-LWE based face encryption and decryption operations implemented on a GPU are approximately 100 times faster than that implemented on a CPU.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于环lwe的GPU人脸加解密系统
本文提出了一种在图形处理单元(GPU)上实现基于视频的人脸加解密的带误差环学习(ring- lwe)加密的新方法。通过在GPU上并行进行环形算术运算,可以显著减少这些运算的处理时间。因此,环lwe加密和解密操作得到了显著改善。利用CUDA c++在GPU和CPU平台上进行的仿真结果表明,基于环lwe的人脸加解密操作在GPU上实现的速度比在CPU上实现的速度快约100倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-carrier Signal Detection using Convolutional Neural Networks An RRAM-based Analog Neuron Design for the Weighted Spiking Neural network NTX: A 260 Gflop/sW Streaming Accelerator for Oblivious Floating-Point Algorithms in 22 nm FD-SOI A Low-Power 20 Gbps Multi-phase MDLL-based Digital CDR with Receiver Equalization Scaling Bit-Flexible Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1