Delay-Based Neural Computation: Pulse Routing Architecture and Benchmark Application in FPGA

V. Thanasoulis, B. Vogginger, J. Partzsch, C. Mayr
{"title":"Delay-Based Neural Computation: Pulse Routing Architecture and Benchmark Application in FPGA","authors":"V. Thanasoulis, B. Vogginger, J. Partzsch, C. Mayr","doi":"10.1109/icecs53924.2021.9665468","DOIUrl":null,"url":null,"abstract":"Neuromorphic engineering implements large-scale systems that provide a high integration density of power efficient synapse-and-neuron blocks. This represents a promising alternative to the numerical simulations for studying the dynamics of spiking neural networks. A key aspect of these systems is the implementation of communication and routing of pulse events produced by the neural network. In this paper we present a measurement methodology and results of a neural benchmark that tests the configurable delays, multicasting and connectivity implemented by a routing logic for neuromorphic hardware. Pulses are handled according to their timestamp and transmitted with configurable delays and routing to different post-synaptic neurons. The results show the suitability of communication and routing logic for delay-based neural computation and point out effects of time discretization in resolution of pulse timestamps.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic engineering implements large-scale systems that provide a high integration density of power efficient synapse-and-neuron blocks. This represents a promising alternative to the numerical simulations for studying the dynamics of spiking neural networks. A key aspect of these systems is the implementation of communication and routing of pulse events produced by the neural network. In this paper we present a measurement methodology and results of a neural benchmark that tests the configurable delays, multicasting and connectivity implemented by a routing logic for neuromorphic hardware. Pulses are handled according to their timestamp and transmitted with configurable delays and routing to different post-synaptic neurons. The results show the suitability of communication and routing logic for delay-based neural computation and point out effects of time discretization in resolution of pulse timestamps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于延迟的神经计算:脉冲路由体系结构及其在FPGA中的基准测试应用
神经形态工程实现大规模系统,提供高能量效率突触和神经元块的高集成密度。这为研究脉冲神经网络的动力学提供了一种有前途的替代方法。这些系统的一个关键方面是实现由神经网络产生的脉冲事件的通信和路由。在本文中,我们提出了一种神经基准测试的测量方法和结果,该测试用于神经形态硬件的路由逻辑实现的可配置延迟,多播和连通性。脉冲根据其时间戳进行处理,并以可配置的延迟和路由传输到不同的突触后神经元。结果表明,通信和路由逻辑适用于基于延迟的神经计算,并指出时间离散化对脉冲时间戳分辨率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gm/ID Design Methodology for 28 nm FD-SOI CMOS Resistive Feedback LNAs Dual Output Regulating Rectifier for an Implantable Neural Interface Frequency-Interleaved ADC with RF Equivalent Ideal Filter for Broadband Optical Communication Receivers Cardiovascular Segmentation Methods Based on Weak or no Prior A 0.2V 0.97nW 0.011mm2 Fully-Passive mHBC Tag Using Intermediate Interference Modulation in 65nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1