{"title":"A solder joint structure with vertically aligned carbon nanofibres as reinforcements","authors":"Si Chen, D. Jiang, L. Ye, Johan Liu","doi":"10.1109/ESTC.2014.6962851","DOIUrl":null,"url":null,"abstract":"In this paper, a solder joint structure was developed for the electronic packaging industry. Vertically aligned carbon nanofibres (VACNFs) were grown, transferred and used at the interface between Si/Au pads and Sn-3.0Ag-0.5Cu (SAC305) alloy as reinforcements in order to increase the solder joint thermal fatigue resistance. The transfer and assembly processes related to VACNFs were optimised and developed. The thermal cycling test results show that the thermal fatigue life of VACNF/SAC305 solder joints is 40% longer than that of pure SAC305. The dye and pry analysis and scanning electron microscopy observation prove that the VACNFs can effectively delay the crack propagation near the interface and consequently prolong the solder joint thermal fatigue life.","PeriodicalId":299981,"journal":{"name":"Proceedings of the 5th Electronics System-integration Technology Conference (ESTC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Electronics System-integration Technology Conference (ESTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTC.2014.6962851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a solder joint structure was developed for the electronic packaging industry. Vertically aligned carbon nanofibres (VACNFs) were grown, transferred and used at the interface between Si/Au pads and Sn-3.0Ag-0.5Cu (SAC305) alloy as reinforcements in order to increase the solder joint thermal fatigue resistance. The transfer and assembly processes related to VACNFs were optimised and developed. The thermal cycling test results show that the thermal fatigue life of VACNF/SAC305 solder joints is 40% longer than that of pure SAC305. The dye and pry analysis and scanning electron microscopy observation prove that the VACNFs can effectively delay the crack propagation near the interface and consequently prolong the solder joint thermal fatigue life.