Information Extraction from the Web: An Ontology-Based Method Using Inductive Logic Programming

Rinaldo Lima, B. Espinasse, Hilário Oliveira, Laura Pentagrossa, F. Freitas
{"title":"Information Extraction from the Web: An Ontology-Based Method Using Inductive Logic Programming","authors":"Rinaldo Lima, B. Espinasse, Hilário Oliveira, Laura Pentagrossa, F. Freitas","doi":"10.1109/ICTAI.2013.114","DOIUrl":null,"url":null,"abstract":"Relevant information extraction from text and web pages in particular is an intensive and time-consuming task that needs important semantic resources. Thus, to be efficient, automatic information extraction systems have to exploit semantic resources (or ontologies) and employ machine-learning techniques to make them more adaptive. This paper presents an Ontology-based Information Extraction method using Inductive Logic Programming that allows inducing symbolic predicates expressed in Horn clausal logic that subsume information extraction rules. Such rules allow the system to extract class and relation instances from English corpora for ontology population purposes. Several experiments were conducted and preliminary experimental results are promising, showing that the proposed approach improves previous work over extracting instances of classes and relations, either separately or altogether.","PeriodicalId":140309,"journal":{"name":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2013.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Relevant information extraction from text and web pages in particular is an intensive and time-consuming task that needs important semantic resources. Thus, to be efficient, automatic information extraction systems have to exploit semantic resources (or ontologies) and employ machine-learning techniques to make them more adaptive. This paper presents an Ontology-based Information Extraction method using Inductive Logic Programming that allows inducing symbolic predicates expressed in Horn clausal logic that subsume information extraction rules. Such rules allow the system to extract class and relation instances from English corpora for ontology population purposes. Several experiments were conducted and preliminary experimental results are promising, showing that the proposed approach improves previous work over extracting instances of classes and relations, either separately or altogether.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络信息抽取:一种基于本体的归纳逻辑编程方法
从文本和网页中提取相关信息是一项费时费力的任务,需要大量的语义资源。因此,为了提高效率,自动信息提取系统必须利用语义资源(或本体),并采用机器学习技术使其更具适应性。本文提出了一种基于本体的信息抽取方法,该方法使用归纳逻辑编程,允许用包含信息抽取规则的Horn子句逻辑表示的符号谓词进行归纳。这些规则允许系统从英语语料库中提取类和关系实例以用于本体填充目的。进行了几个实验,初步的实验结果很有希望,表明所提出的方法改进了以前的工作,可以单独或一起提取类和关系的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automatic Algorithm Selection Approach for Planning Learning Useful Macro-actions for Planning with N-Grams Optimizing Dynamic Ensemble Selection Procedure by Evolutionary Extreme Learning Machines and a Noise Reduction Filter Motion-Driven Action-Based Planning Assessing Procedural Knowledge in Free-Text Answers through a Hybrid Semantic Web Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1