An Algebraic Coupled Canonical Polyadic Decomposition Algorithm via Joint Eigenvalue Decomposition

Kai Xi, Xiaofeng Gong, Qiuhua Lin
{"title":"An Algebraic Coupled Canonical Polyadic Decomposition Algorithm via Joint Eigenvalue Decomposition","authors":"Kai Xi, Xiaofeng Gong, Qiuhua Lin","doi":"10.1145/3529570.3529576","DOIUrl":null,"url":null,"abstract":"Coupled canonical polyadic decomposition (C-CPD) has been widely applied in signal processing and data analysis. In this paper, we propose a new algebraic C-CPD algorithm based on joint eigenvalue decomposition (J-EVD). The proposed algorithm exploits the CPD structure of each tensor and the coupling among different tensors to construct a set of matrices that together admit a J-EVD, the algebraic computation of which yields the common factor matrix. Then, the remaining factor matrices can be obtained by rank-1 approximation with the obtained common factor matrix as prior knowledge. Numerical results are given to demonstrate the performance of the proposed algorithm in comparison with existing algebraic C-CPD algorithms.","PeriodicalId":430367,"journal":{"name":"Proceedings of the 6th International Conference on Digital Signal Processing","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529570.3529576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coupled canonical polyadic decomposition (C-CPD) has been widely applied in signal processing and data analysis. In this paper, we propose a new algebraic C-CPD algorithm based on joint eigenvalue decomposition (J-EVD). The proposed algorithm exploits the CPD structure of each tensor and the coupling among different tensors to construct a set of matrices that together admit a J-EVD, the algebraic computation of which yields the common factor matrix. Then, the remaining factor matrices can be obtained by rank-1 approximation with the obtained common factor matrix as prior knowledge. Numerical results are given to demonstrate the performance of the proposed algorithm in comparison with existing algebraic C-CPD algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于联合特征值分解的代数耦合正则多进分解算法
耦合正则多进分解(C-CPD)在信号处理和数据分析中有着广泛的应用。本文提出了一种新的基于联合特征值分解(J-EVD)的代数C-CPD算法。该算法利用每个张量的CPD结构和不同张量之间的耦合构造一组共同承认J-EVD的矩阵,其代数计算得到公因式矩阵。然后,将得到的公共因子矩阵作为先验知识,通过秩-1近似得到剩余的因子矩阵。数值结果表明了该算法与现有代数C-CPD算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inference and Prediction in Big Data Using Sparse Gaussian Process Method A SAR Image Denoising Method for Target Shadow Tracking Task Development of an English Teaching Robot for Japanese Students Joint Power and Bandwidth Allocation for 3D Video SoftCast Some Evaluations on Spectrogram Art Communications Exchanging Secret Visual Messages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1