Application of Sequential Regression Multivariate Imputation Method on Multivariate Normal Missing Data

Nurzaman, T. Siswantining, S. Soemartojo, Devvi Sarwinda
{"title":"Application of Sequential Regression Multivariate Imputation Method on Multivariate Normal Missing Data","authors":"Nurzaman, T. Siswantining, S. Soemartojo, Devvi Sarwinda","doi":"10.1109/ICICoS48119.2019.8982423","DOIUrl":null,"url":null,"abstract":"Missing values means the absence of data items for an observation that can result in the loss of certain information. During surveys, there are often missing values or missing data because there are likely respondents who cannot answer the question or do not want to answer the question. One way to handle missing values can be done by imputation, which is the process of filling or replacing missing values in the dataset with possible values based on information obtained in the dataset. This paper will apply the sequential regression multivariate imputation (SRMI) method for imputation of missing values in normal multivariate data. SRMI is a multiple imputation method whose imputation values are obtained from the sequence of regression model, where each variable containing missing values is regressed against all other variables that do not contain missing values as predictor variables. The way to get the value of imputation is to use an iteration approach to draw values from the predictive posterior distribution of the missing values under each successive regression model. the results of the evaluation of imputation quality on simulation data using Root Mean Square Error (RMSE).","PeriodicalId":105407,"journal":{"name":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICoS48119.2019.8982423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Missing values means the absence of data items for an observation that can result in the loss of certain information. During surveys, there are often missing values or missing data because there are likely respondents who cannot answer the question or do not want to answer the question. One way to handle missing values can be done by imputation, which is the process of filling or replacing missing values in the dataset with possible values based on information obtained in the dataset. This paper will apply the sequential regression multivariate imputation (SRMI) method for imputation of missing values in normal multivariate data. SRMI is a multiple imputation method whose imputation values are obtained from the sequence of regression model, where each variable containing missing values is regressed against all other variables that do not contain missing values as predictor variables. The way to get the value of imputation is to use an iteration approach to draw values from the predictive posterior distribution of the missing values under each successive regression model. the results of the evaluation of imputation quality on simulation data using Root Mean Square Error (RMSE).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
序列回归多元插值方法在多元正态缺失数据中的应用
缺失值意味着观测数据项的缺失,这可能导致某些信息的丢失。在调查过程中,经常会有缺失的值或缺失的数据,因为可能有受访者不能回答问题或不想回答问题。处理缺失值的一种方法是通过插值,即根据数据集中获得的信息,用可能的值填充或替换数据集中的缺失值。本文将序贯回归多变量插值(SRMI)方法应用于正常多变量数据缺失值的插值。SRMI是一种多重插值方法,其插值值从回归模型的序列中获得,其中每个包含缺失值的变量作为预测变量与所有不包含缺失值的其他变量进行回归。输入值的获取方法是利用迭代法从每一个逐次回归模型下缺失值的预测后验分布中提取值。利用均方根误差(RMSE)对仿真数据的输入质量进行评价的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of GPGPU-Based Brute-Force and Dictionary Attack on SHA-1 Password Hash Ranking of Game Mechanics for Gamification in Mobile Payment Using AHP-TOPSIS: Uses and Gratification Perspective An Assesment of Knowledge Sharing System: SCeLE Universitas Indonesia Improved Line Operator for Retinal Blood Vessel Segmentation Classification of Abnormality in Chest X-Ray Images by Transfer Learning of CheXNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1