Optical and electrical properties of InN grown by radio-frequency sputtering

M. Wintrebert-Fouquet, K. Butcher, Motlan
{"title":"Optical and electrical properties of InN grown by radio-frequency sputtering","authors":"M. Wintrebert-Fouquet, K. Butcher, Motlan","doi":"10.1109/COMMAD.2002.1237198","DOIUrl":null,"url":null,"abstract":"InN is now one of the hottest materials in the world. Interest stems from the potential for the development of the next generation of mobile communication hardware. International research is increased dramatically, however Australia remains a pioneering research force in this area. In this paper, we present our latest results on the optical and electrical characterisation of InN thin films prepared by RF reactive sputtering of an In target with pure nitrogen gas. A new aspect of target conditioning is identified as an important growth parameter. A series of samples were grown with different thickness under optimized growth conditions. Films were characterised by X-ray diffraction, atomic force microscopy and Hall measurements. Optical measurements show that films have band gap values close to 2 eV. A comparative study of the optical and electrical properties is reported after removing 100 to 200 nm of the film surface by reactive ion etching.","PeriodicalId":129668,"journal":{"name":"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMAD.2002.1237198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

InN is now one of the hottest materials in the world. Interest stems from the potential for the development of the next generation of mobile communication hardware. International research is increased dramatically, however Australia remains a pioneering research force in this area. In this paper, we present our latest results on the optical and electrical characterisation of InN thin films prepared by RF reactive sputtering of an In target with pure nitrogen gas. A new aspect of target conditioning is identified as an important growth parameter. A series of samples were grown with different thickness under optimized growth conditions. Films were characterised by X-ray diffraction, atomic force microscopy and Hall measurements. Optical measurements show that films have band gap values close to 2 eV. A comparative study of the optical and electrical properties is reported after removing 100 to 200 nm of the film surface by reactive ion etching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
射频溅射生长的InN的光学和电学性质
InN现在是世界上最热门的材料之一。兴趣源于下一代移动通信硬件发展的潜力。国际研究急剧增加,但澳大利亚仍然是该领域的先驱研究力量。本文介绍了用纯氮气对铟靶进行射频反应溅射制备的铟薄膜的光学和电学表征的最新结果。目标调节的一个新方面被确定为一个重要的生长参数。在优化的生长条件下,对不同厚度的样品进行了生长。通过x射线衍射、原子力显微镜和霍尔测量对薄膜进行了表征。光学测量表明,薄膜的带隙值接近2ev。本文报道了用反应离子刻蚀法去除薄膜表面100 ~ 200nm处后的光学和电学性能的对比研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated fabrication of InGaP/GaAs /spl delta/-doped heterojunction bipolar transistor and doped-channel field effect transistor Micro fluxgate sensor using solenoid driving and sensing coils Minimisation of P surface segregation during epitaxial silicon growth for the fabrication of a silicon-based quantum computer Characterisation of Ti:sapphire layers synthesized energy ion implantation Impact of deposition parameters on the characterizations of highly orientated aluminum nitride for film bulk acoustic wave resonator device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1