Explainable Artificial Intelligence (XAI) in auditing

IF 4.1 3区 管理学 Q2 BUSINESS International Journal of Accounting Information Systems Pub Date : 2022-09-01 DOI:10.1016/j.accinf.2022.100572
Chanyuan (Abigail) Zhang , Soohyun Cho , Miklos Vasarhelyi
{"title":"Explainable Artificial Intelligence (XAI) in auditing","authors":"Chanyuan (Abigail) Zhang ,&nbsp;Soohyun Cho ,&nbsp;Miklos Vasarhelyi","doi":"10.1016/j.accinf.2022.100572","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial Intelligence (AI) and Machine Learning (ML) are gaining increasing attention regarding their potential applications in auditing. One major challenge of their adoption in auditing is the lack of explainability of their results. As AI/ML matures, so do techniques that can enhance the interpretability of AI, a.k.a., Explainable Artificial Intelligence (XAI). This paper introduces XAI techniques to auditing practitioners and researchers. We discuss how different XAI techniques can be used to meet the requirements of audit documentation and audit evidence standards. Furthermore, we demonstrate popular XAI techniques, especially Local Interpretable Model-agnostic Explanations (LIME) and Shapley Additive exPlanations (SHAP), using an auditing task of assessing the risk of material misstatement. This paper contributes to accounting information systems research and practice by introducing XAI techniques to enhance the transparency and interpretability of AI applications applied to auditing tasks.</p></div>","PeriodicalId":47170,"journal":{"name":"International Journal of Accounting Information Systems","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Accounting Information Systems","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1467089522000240","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 25

Abstract

Artificial Intelligence (AI) and Machine Learning (ML) are gaining increasing attention regarding their potential applications in auditing. One major challenge of their adoption in auditing is the lack of explainability of their results. As AI/ML matures, so do techniques that can enhance the interpretability of AI, a.k.a., Explainable Artificial Intelligence (XAI). This paper introduces XAI techniques to auditing practitioners and researchers. We discuss how different XAI techniques can be used to meet the requirements of audit documentation and audit evidence standards. Furthermore, we demonstrate popular XAI techniques, especially Local Interpretable Model-agnostic Explanations (LIME) and Shapley Additive exPlanations (SHAP), using an auditing task of assessing the risk of material misstatement. This paper contributes to accounting information systems research and practice by introducing XAI techniques to enhance the transparency and interpretability of AI applications applied to auditing tasks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可解释的人工智能(XAI)在审计
人工智能(AI)和机器学习(ML)在审计中的潜在应用越来越受到关注。在审计中采用它们的一个主要挑战是其结果缺乏可解释性。随着AI/ML的成熟,可以增强AI可解释性的技术也在成熟,即可解释的人工智能(XAI)。本文向审计从业人员和研究人员介绍了XAI技术。我们将讨论如何使用不同的XAI技术来满足审计文档和审计证据标准的要求。此外,我们展示了流行的XAI技术,特别是局部可解释模型不可知解释(LIME)和Shapley加性解释(SHAP),使用评估重大错报风险的审计任务。本文通过引入人工智能技术来提高人工智能应用于审计任务的透明度和可解释性,为会计信息系统的研究和实践做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.00
自引率
6.50%
发文量
23
期刊介绍: The International Journal of Accounting Information Systems will publish thoughtful, well developed articles that examine the rapidly evolving relationship between accounting and information technology. Articles may range from empirical to analytical, from practice-based to the development of new techniques, but must be related to problems facing the integration of accounting and information technology. The journal will address (but will not limit itself to) the following specific issues: control and auditability of information systems; management of information technology; artificial intelligence research in accounting; development issues in accounting and information systems; human factors issues related to information technology; development of theories related to information technology; methodological issues in information technology research; information systems validation; human–computer interaction research in accounting information systems. The journal welcomes and encourages articles from both practitioners and academicians.
期刊最新文献
Bridging the gap in talent: A framework for interdisciplinary research on autism spectrum disorder persons in accounting and information systems A scoping review of ChatGPT research in accounting and finance Digital transformation voluntary disclosure: Insights from leading European companies Understanding cybersecurity breach contagion effects: The role of the loss heuristic and internal controls Internal control risk disclosure, media coverage and stock price crash risk: Evidence from China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1