Examining the Performance Impact of NoC Parameters for Scalable and Adaptive FPGA-Based Network-on-Chips

S. Abba, Jeong-A Lee
{"title":"Examining the Performance Impact of NoC Parameters for Scalable and Adaptive FPGA-Based Network-on-Chips","authors":"S. Abba, Jeong-A Lee","doi":"10.1109/CIMSIM.2013.65","DOIUrl":null,"url":null,"abstract":"In this paper we propose a methodology for investigating the impact of basic Network-on-Chip (NoC) parameters and self-adaptive scheme in the context of the Field Programmable Gate Array (FPGA). With our proposed methodology that is based on the Bayesian networking model we examined the effects of flit buffer depth, flit data width and virtual channel parameters through an extensive experimentation and simulation for scalable and adaptive NoC on Xilinx Virtex7 FPGA device. To demonstrate the flexibility and extensible design space coverage of our methodology, we design and present hardware synthesis results of 96 different NoCs configurations. We used a cycle accurate simulation system and drive the NoCs with four different traffic patterns and varying number of virtual channels (VCs) and show the resulting load-delay curves. Our results show that, for scalable and adaptive NoC, the flit data width and flit buffer depth parameters have the largest impact on FPGA area and clock frequency. We show that these parameters need to be properly adjusted for better run-time performance of the FPGA. Moreover, the neighbor traffic pattern with 4 VCs offer the best performance with 95% throughput, low latency and efficient silicon area in both Mesh and Torus networks.","PeriodicalId":249355,"journal":{"name":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIM.2013.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we propose a methodology for investigating the impact of basic Network-on-Chip (NoC) parameters and self-adaptive scheme in the context of the Field Programmable Gate Array (FPGA). With our proposed methodology that is based on the Bayesian networking model we examined the effects of flit buffer depth, flit data width and virtual channel parameters through an extensive experimentation and simulation for scalable and adaptive NoC on Xilinx Virtex7 FPGA device. To demonstrate the flexibility and extensible design space coverage of our methodology, we design and present hardware synthesis results of 96 different NoCs configurations. We used a cycle accurate simulation system and drive the NoCs with four different traffic patterns and varying number of virtual channels (VCs) and show the resulting load-delay curves. Our results show that, for scalable and adaptive NoC, the flit data width and flit buffer depth parameters have the largest impact on FPGA area and clock frequency. We show that these parameters need to be properly adjusted for better run-time performance of the FPGA. Moreover, the neighbor traffic pattern with 4 VCs offer the best performance with 95% throughput, low latency and efficient silicon area in both Mesh and Torus networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究NoC参数对可扩展和自适应fpga芯片网络性能的影响
在本文中,我们提出了一种在现场可编程门阵列(FPGA)背景下研究基本片上网络(NoC)参数和自适应方案影响的方法。根据我们提出的基于贝叶斯网络模型的方法,我们通过在Xilinx Virtex7 FPGA器件上对可扩展和自适应NoC进行广泛的实验和模拟,研究了漂移缓冲区深度、漂移数据宽度和虚拟通道参数的影响。为了展示我们方法的灵活性和可扩展的设计空间覆盖范围,我们设计并展示了96种不同noc配置的硬件合成结果。我们使用了一个周期精确的仿真系统,并以四种不同的流量模式和不同数量的虚拟通道(vc)驱动noc,并显示了由此产生的负载延迟曲线。结果表明,对于可扩展和自适应的NoC,暂存数据宽度和暂存缓冲深度参数对FPGA面积和时钟频率的影响最大。我们表明,这些参数需要适当调整,以获得更好的FPGA运行时性能。此外,具有4个vc的邻居流量模式在Mesh和Torus网络中都具有95%的吞吐量,低延迟和高效的硅面积,具有最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Software Quality Standards on Commercial Product Development and Customer Satisfaction for Software Industry in Pakistan Bringing Semantic Resources Together in the Cloud: From Theory to Application A Unified Architecture for a Dual Field ECC Processor Applicable to AES Comparison of Back Propagation and Resilient Propagation Algorithm for Spam Classification HIPAA Based Predictive Analytics for an Adaptive and Descriptive Mobile Healthcare System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1