Decentralized Makespan Minimization for Uniformly Related Agents

Raunak Sengupta, R. Nagi
{"title":"Decentralized Makespan Minimization for Uniformly Related Agents","authors":"Raunak Sengupta, R. Nagi","doi":"10.1109/CASE49439.2021.9551549","DOIUrl":null,"url":null,"abstract":"We consider a set of indivisible operations and a set of uniformly related agents, i.e., agents with different speeds. Our aim is to develop a task allocation algorithm that minimizes the makespan in a decentralized manner. To achieve this, we first present the Operation Trading Algorithm. We show that the algorithm guarantees a worst case approximation factor of 1.618 for the 2 agent case and $\\frac{1+\\sqrt{4n-3}}{2}$ for the general n agent case. Further, we prove that the algorithm guarantees a near-optimal makespan for real-life scenarios with large number of operations under the assumption of a fully connected network of agents. The algorithm also guarantees an approximation factor less than 2 for any number of identical agents. Following this, we present a Decentralized random Group Formation protocol which enables the agents to implement OTA(n) in a decentralized manner in presence of communication failures. Finally, using numerical results, we show that the algorithm generates near optimal allocations even in the presence of communication failures. Additionally, the algorithm is parameter free and allows fast re-planning, making it robust to machine failures and changes in the environment.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a set of indivisible operations and a set of uniformly related agents, i.e., agents with different speeds. Our aim is to develop a task allocation algorithm that minimizes the makespan in a decentralized manner. To achieve this, we first present the Operation Trading Algorithm. We show that the algorithm guarantees a worst case approximation factor of 1.618 for the 2 agent case and $\frac{1+\sqrt{4n-3}}{2}$ for the general n agent case. Further, we prove that the algorithm guarantees a near-optimal makespan for real-life scenarios with large number of operations under the assumption of a fully connected network of agents. The algorithm also guarantees an approximation factor less than 2 for any number of identical agents. Following this, we present a Decentralized random Group Formation protocol which enables the agents to implement OTA(n) in a decentralized manner in presence of communication failures. Finally, using numerical results, we show that the algorithm generates near optimal allocations even in the presence of communication failures. Additionally, the algorithm is parameter free and allows fast re-planning, making it robust to machine failures and changes in the environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
统一相关代理的分散最大时间跨度最小化
我们考虑一组不可分割的操作和一组一致相关的代理,即具有不同速度的代理。我们的目标是开发一种任务分配算法,以分散的方式最小化makespan。为了实现这一点,我们首先提出了操作交易算法。我们表明,该算法保证了2个代理情况下的最坏情况近似因子为1.618,对于一般的n个代理情况下的近似因子为$\frac{1+\sqrt{4n-3}}{2}$。此外,我们证明了该算法在假设完全连接的智能体网络下,对于具有大量操作的现实场景,保证了接近最优的makespan。该算法还保证对于任意数量的相同代理,近似因子小于2。在此之后,我们提出了一种分散的随机组形成协议,该协议使代理能够在存在通信故障的情况下以分散的方式实现OTA(n)。最后,通过数值结果表明,即使在存在通信故障的情况下,该算法也能产生接近最优的分配。此外,该算法是无参数的,允许快速重新规划,使其对机器故障和环境变化具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1