Hongyan Zhou, Shibin Zhang, Zhongxu Li, Kai Huang, Pengcheng Zheng, Jinbo Wu, Chen Shen, Liping Zhang, T. You, Lianghui Zhang, Kang Liu, Huarui Sun, Hongtao Xu, Xiaomeng Zhao, X. Ou
{"title":"Surface Wave and Lamb Wave Acoustic Devices on Heterogenous Substrate for 5G Front-Ends","authors":"Hongyan Zhou, Shibin Zhang, Zhongxu Li, Kai Huang, Pengcheng Zheng, Jinbo Wu, Chen Shen, Liping Zhang, T. You, Lianghui Zhang, Kang Liu, Huarui Sun, Hongtao Xu, Xiaomeng Zhao, X. Ou","doi":"10.1109/IEDM13553.2020.9372128","DOIUrl":null,"url":null,"abstract":"We demonstrate groups of surface wave (SH0 mode) and Lamb wave (S0 mode) acoustic devices on lithium niobate thin films on silicon carbide (LNOSiC) heterogeneous substrate. The 4-inch LNOSiC with an excellent thermal transport property is prepared by ion-cutting process. The fabricated acoustic resonators on the LNOSiC substrate show scalable resonances from 2.0 to 4.72 GHz, in which the SH0 (S0) mode resonator shows a $k_t^2$ of 24.1% (15.5%) and a maximum Bode-Q of 976 (577) at 2.54 (3.56) GHz. Moreover, the phase velocity (Vp) of the SH0 (S0) mode is greater than 5000 (6400) m/s, which is about 1.25 (1.6) times higher than that of the conventional SAWs, so as the operating frequency. The filter with a center frequency of 2.62 GHz, an insertion loss (IL) of 1.06 dB, and a 3-dB fractional bandwidth (FBW) of 12.6% (three times larger than that of the conventional SAWs) is also achieved. The acoustic devices on heterogeneous substrate are very promising for high frequency, wideband and high power 5G front-ends.","PeriodicalId":415186,"journal":{"name":"2020 IEEE International Electron Devices Meeting (IEDM)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM13553.2020.9372128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
We demonstrate groups of surface wave (SH0 mode) and Lamb wave (S0 mode) acoustic devices on lithium niobate thin films on silicon carbide (LNOSiC) heterogeneous substrate. The 4-inch LNOSiC with an excellent thermal transport property is prepared by ion-cutting process. The fabricated acoustic resonators on the LNOSiC substrate show scalable resonances from 2.0 to 4.72 GHz, in which the SH0 (S0) mode resonator shows a $k_t^2$ of 24.1% (15.5%) and a maximum Bode-Q of 976 (577) at 2.54 (3.56) GHz. Moreover, the phase velocity (Vp) of the SH0 (S0) mode is greater than 5000 (6400) m/s, which is about 1.25 (1.6) times higher than that of the conventional SAWs, so as the operating frequency. The filter with a center frequency of 2.62 GHz, an insertion loss (IL) of 1.06 dB, and a 3-dB fractional bandwidth (FBW) of 12.6% (three times larger than that of the conventional SAWs) is also achieved. The acoustic devices on heterogeneous substrate are very promising for high frequency, wideband and high power 5G front-ends.