Preoperative Personalized Vascular 3D Simulator of the Intelligent Robotic Ecosystem LevshAI for Endovascular Neurosurgery

I. Menshikov, K. Orlov, V. Berestov, Alexandra Bernadotte
{"title":"Preoperative Personalized Vascular 3D Simulator of the Intelligent Robotic Ecosystem LevshAI for Endovascular Neurosurgery","authors":"I. Menshikov, K. Orlov, V. Berestov, Alexandra Bernadotte","doi":"10.1109/ICARA56516.2023.10125981","DOIUrl":null,"url":null,"abstract":"The paper presented a Personalized Intelligent Vascular 3D Simulator as an essential part of the Intelligent Robotic Ecosystem LevshAI for remote endovascular neurosurgery. The training LevshAI is equipped with intelligent haptic feedback and Personalized 3D Simulator. The simulator creates a unique personal vascular architecture according to the individual patient parameters obtained from the medical images. The Personalized 3D Simulator allows surgeons to practice on the simulator and choose the best tactics before the operation - personalized surgery. The feedback and simulator of the LevshAI system provide a training environment identical to what a surgeon would experience in an operating room. The simulator is based on proposed segmentation and reconstruction algorithms. The presented algorithms are fully automated and can be applied to any imaging modality. The simulator has passed a preclinical study on both Computed Tomography Angiography and Magnetic Resonance Angiography data. The Personalized Intelligent Vascular 3D Simulator can be applied to (1) personalized surgery; (2) automated screening for cerebrovascular risks in healthy people.","PeriodicalId":443572,"journal":{"name":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA56516.2023.10125981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper presented a Personalized Intelligent Vascular 3D Simulator as an essential part of the Intelligent Robotic Ecosystem LevshAI for remote endovascular neurosurgery. The training LevshAI is equipped with intelligent haptic feedback and Personalized 3D Simulator. The simulator creates a unique personal vascular architecture according to the individual patient parameters obtained from the medical images. The Personalized 3D Simulator allows surgeons to practice on the simulator and choose the best tactics before the operation - personalized surgery. The feedback and simulator of the LevshAI system provide a training environment identical to what a surgeon would experience in an operating room. The simulator is based on proposed segmentation and reconstruction algorithms. The presented algorithms are fully automated and can be applied to any imaging modality. The simulator has passed a preclinical study on both Computed Tomography Angiography and Magnetic Resonance Angiography data. The Personalized Intelligent Vascular 3D Simulator can be applied to (1) personalized surgery; (2) automated screening for cerebrovascular risks in healthy people.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血管内神经外科智能机器人生态系统LevshAI的术前个性化血管三维模拟器
本文介绍了一种个性化智能血管三维模拟器,作为远程血管内神经外科智能机器人生态系统LevshAI的重要组成部分。训练LevshAI配备了智能触觉反馈和个性化3D模拟器。该模拟器根据从医学图像中获得的个体患者参数创建独特的个人血管结构。个性化3D模拟器允许外科医生在手机上练习,并在手术前选择最佳策略——个性化手术。LevshAI系统的反馈和模拟器提供了一个与外科医生在手术室中所经历的相同的培训环境。该模拟器基于所提出的分割和重建算法。所提出的算法是完全自动化的,可以应用于任何成像模式。该模拟器通过了计算机断层血管成像和磁共振血管成像数据的临床前研究。个性化智能血管三维模拟器可应用于(1)个性化手术;(2)健康人群脑血管风险自动筛查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fused Swish-ReLU Efficient-Net Model for Deepfakes Detection SensorClouds: A Framework for Real-Time Processing of Multi-modal Sensor Data for Human-Robot-Collaboration Modified Bug Algorithm with Proximity Sensors to Reduce Human-Cobot Collisions Toward Computationally Efficient Path Generation and Push Planning for Robotic Nonprehensile Manipulation Correlation Analysis of Factors Influencing the Motion Planning Accuracy of Articulated Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1