Improving Quantization Matrices for Image Coding by Machine Learning

Wei Ke, Ka‐Hou Chan
{"title":"Improving Quantization Matrices for Image Coding by Machine Learning","authors":"Wei Ke, Ka‐Hou Chan","doi":"10.1145/3529570.3529590","DOIUrl":null,"url":null,"abstract":"We investigate the generation of quantization matrices for image coding in the scenario to balance compression ratio and quality. We make use of machine learning to train and determine those quantization matrices that can achieve the best compression ratio while reaching the quality settings. By introducing the trainable parameters and considering the impact of the quantization module on task performance and compression ratio, the DCT and quantization modules are jointly optimized to minimize the total coding cost. We evaluate the well-trained quantization matrices under various quality settings of JPEG. The results indicate that the proposed scheme can be combined with quality settings to consistently achieve better compression performance.","PeriodicalId":430367,"journal":{"name":"Proceedings of the 6th International Conference on Digital Signal Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529570.3529590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate the generation of quantization matrices for image coding in the scenario to balance compression ratio and quality. We make use of machine learning to train and determine those quantization matrices that can achieve the best compression ratio while reaching the quality settings. By introducing the trainable parameters and considering the impact of the quantization module on task performance and compression ratio, the DCT and quantization modules are jointly optimized to minimize the total coding cost. We evaluate the well-trained quantization matrices under various quality settings of JPEG. The results indicate that the proposed scheme can be combined with quality settings to consistently achieve better compression performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的图像编码量化矩阵改进
我们研究了图像编码场景中量化矩阵的生成,以平衡压缩比和质量。我们利用机器学习来训练和确定那些量化矩阵,这些量化矩阵可以在达到质量设置的同时获得最佳压缩比。通过引入可训练参数,考虑量化模块对任务性能和压缩比的影响,对DCT和量化模块进行联合优化,使总编码成本最小。我们在不同的JPEG质量设置下评估训练良好的量化矩阵。结果表明,该方案可以与质量设置相结合,以一致地获得更好的压缩性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inference and Prediction in Big Data Using Sparse Gaussian Process Method A SAR Image Denoising Method for Target Shadow Tracking Task Development of an English Teaching Robot for Japanese Students Joint Power and Bandwidth Allocation for 3D Video SoftCast Some Evaluations on Spectrogram Art Communications Exchanging Secret Visual Messages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1