Sensing with Memristive Complementary Resistive Switch: Modelling and Simulations

V. Gupta, D. Pellegrini, S. Khandelwal, A. Jabir, Shahar Kvatinsky, E. Martinelli, C. Natale, M. Ottavi
{"title":"Sensing with Memristive Complementary Resistive Switch: Modelling and Simulations","authors":"V. Gupta, D. Pellegrini, S. Khandelwal, A. Jabir, Shahar Kvatinsky, E. Martinelli, C. Natale, M. Ottavi","doi":"10.1109/DFT50435.2020.9250843","DOIUrl":null,"url":null,"abstract":"Sensors give factual and process information about the environment or other physical phenomena. Sensing using memristors has been recently introduced for its potential for high density integration and miniaturization. Complementary Resistive Switch (CRS) based sensor provides an extremely efficient crossbar array that reduces the sneak current. The objective of this paper is to introduce and evaluate a circuit model for sensing using memristive complementary resistive switch. We introduce a reliable SPICE implementation of memristor model that captures the sensing behaviour of memristor. Our simulation results also validate the SPICE model for CRS sensing architecture, whose parameters could be easily adapted to match experimental data. The results also investigate the sensitivity and device behaviour of memristor and CRS sensor device in the presence of oxidizing and reducing gases of different concentration.","PeriodicalId":340119,"journal":{"name":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT50435.2020.9250843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sensors give factual and process information about the environment or other physical phenomena. Sensing using memristors has been recently introduced for its potential for high density integration and miniaturization. Complementary Resistive Switch (CRS) based sensor provides an extremely efficient crossbar array that reduces the sneak current. The objective of this paper is to introduce and evaluate a circuit model for sensing using memristive complementary resistive switch. We introduce a reliable SPICE implementation of memristor model that captures the sensing behaviour of memristor. Our simulation results also validate the SPICE model for CRS sensing architecture, whose parameters could be easily adapted to match experimental data. The results also investigate the sensitivity and device behaviour of memristor and CRS sensor device in the presence of oxidizing and reducing gases of different concentration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
忆阻互补电阻开关传感:建模与仿真
传感器提供有关环境或其他物理现象的事实和过程信息。由于具有高密度集成和小型化的潜力,使用忆阻器的传感最近被引入。互补电阻开关(CRS)为基础的传感器提供了一个非常有效的横条阵列,减少了潜流。本文的目的是介绍和评估一种利用忆阻互补电阻开关进行传感的电路模型。我们介绍了一个可靠的忆阻器模型的SPICE实现,它捕获了忆阻器的传感行为。仿真结果也验证了SPICE模型对CRS传感体系结构的影响,该模型的参数可以很容易地与实验数据相匹配。研究了不同浓度的氧化性和还原性气体存在时,忆阻器和CRS传感器的灵敏度和器件性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Variation-Aware Test for Logic Interconnects using Neural Networks – A Case Study A Pipelined Multi-Level Fault Injector for Deep Neural Networks Reliable Classification with Ensemble Convolutional Neural Networks Hardware Accelerator Design with Supervised Machine Learning for Solar Particle Event Prediction Latest Trends in Hardware Security and Privacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1