Missing Value Analysis of Numerical Data using Fractional Hot Deck Imputation

Samuel Zico Christopher, T. Siswantining, Devvi Sarwinda, Alhadi Bustaman
{"title":"Missing Value Analysis of Numerical Data using Fractional Hot Deck Imputation","authors":"Samuel Zico Christopher, T. Siswantining, Devvi Sarwinda, Alhadi Bustaman","doi":"10.1109/ICICoS48119.2019.8982412","DOIUrl":null,"url":null,"abstract":"One of the solutions of missing value in a survey is imputation. Imputation is a method to replace the missing value with the imputed value from a particular technique, such as mean value, median value, etc. This paper specifically discusses a technique that fuses fractional imputation technique and hot-deck imputation technique. Fractional imputation is popular because this imputation tends to produce lower standard error compared to other methods. Unfortunately, fractional imputation tends to extend the number of observations. Because of the observation extension, sampling becomes a solution to produce less observation. Sampling limits the numbers of imputed values (donor) in the observations by using hot deck imputation nature. The imputation that fuses fractional imputation and hot-deck imputation is known as the fractional hot deck. This paper presents three things about fractional hot deck imputation, first, it shows that the result of fractional hot deck imputation produces fewer donor than fractional imputation, but still has a similar property to fractional imputation that presented in linear regression; Second, it presents an additional information about it's effect on modifying it's k-value in discretization step and the standard error of regression; Third, it presents the comparison of standard errors with fractional imputation, listwise deletion, mean imputation, and median imputation.","PeriodicalId":105407,"journal":{"name":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICoS48119.2019.8982412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

One of the solutions of missing value in a survey is imputation. Imputation is a method to replace the missing value with the imputed value from a particular technique, such as mean value, median value, etc. This paper specifically discusses a technique that fuses fractional imputation technique and hot-deck imputation technique. Fractional imputation is popular because this imputation tends to produce lower standard error compared to other methods. Unfortunately, fractional imputation tends to extend the number of observations. Because of the observation extension, sampling becomes a solution to produce less observation. Sampling limits the numbers of imputed values (donor) in the observations by using hot deck imputation nature. The imputation that fuses fractional imputation and hot-deck imputation is known as the fractional hot deck. This paper presents three things about fractional hot deck imputation, first, it shows that the result of fractional hot deck imputation produces fewer donor than fractional imputation, but still has a similar property to fractional imputation that presented in linear regression; Second, it presents an additional information about it's effect on modifying it's k-value in discretization step and the standard error of regression; Third, it presents the comparison of standard errors with fractional imputation, listwise deletion, mean imputation, and median imputation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分数热甲板法的数值数据缺失值分析
调查中缺失价值的解决方法之一是归算。代入是一种用特定技术的代入值(如平均值、中位数等)代替缺失值的方法。本文具体讨论了一种将分数归算技术与热甲板归算技术相结合的方法。分数归算之所以流行,是因为与其他方法相比,这种归算倾向于产生更低的标准误差。不幸的是,分数归算倾向于扩大观测的数量。由于观测值的可拓性,采样成为一种产生较少观测值的解决方案。抽样利用热甲板归算特性,限制了观测值中输入值(供体)的数量。将分数归算和热甲板归算相结合的归算称为分数热甲板归算。本文介绍了关于分数阶热甲板归算的三个问题:第一,分数阶热甲板归算的结果比分数阶归算产生的供体少,但仍然具有线性回归中表现出的与分数阶归算相似的性质;其次,给出了它对离散化步骤中k值的修改和回归标准误差的影响的附加信息;第三,比较了分数代入、列表删除、均值代入和中位数代入的标准误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of GPGPU-Based Brute-Force and Dictionary Attack on SHA-1 Password Hash Ranking of Game Mechanics for Gamification in Mobile Payment Using AHP-TOPSIS: Uses and Gratification Perspective An Assesment of Knowledge Sharing System: SCeLE Universitas Indonesia Improved Line Operator for Retinal Blood Vessel Segmentation Classification of Abnormality in Chest X-Ray Images by Transfer Learning of CheXNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1