Performance Prediction of Large-Scale 1S1R Resistive Memory Array Using Machine Learning

Zizhen Jiang, Peng Huang, Liang Zhao, Shahar Kvatinsky, Shimeng Yu, Xiaoyan Liu, Jinfeng Kang, Y. Nishi, H. Wong
{"title":"Performance Prediction of Large-Scale 1S1R Resistive Memory Array Using Machine Learning","authors":"Zizhen Jiang, Peng Huang, Liang Zhao, Shahar Kvatinsky, Shimeng Yu, Xiaoyan Liu, Jinfeng Kang, Y. Nishi, H. Wong","doi":"10.1109/IMW.2015.7150302","DOIUrl":null,"url":null,"abstract":"A methodology to analyze device-to-circuit characteristics and predict memory array performance is presented. With a five- parameter characterization of the selection device and a compact model of RRAM, we are able to capture the behaviors of reported selection devices and simulate 1S1R cell/array performance with RRAM compact modeling using HSPICE. To predict the performance of the memory array for a variety of selectors, machine-learning algorithms are employed, using device characteristics and circuit simulation results as the training data. The influence of selector parameters on the 1S1R cell and array behavior is investigated and projected to large Gbit arrays. The machine learning methods enable time-efficient and accurate estimates of 1S1R array performance to guide large-scale memory design.","PeriodicalId":107437,"journal":{"name":"2015 IEEE International Memory Workshop (IMW)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW.2015.7150302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

A methodology to analyze device-to-circuit characteristics and predict memory array performance is presented. With a five- parameter characterization of the selection device and a compact model of RRAM, we are able to capture the behaviors of reported selection devices and simulate 1S1R cell/array performance with RRAM compact modeling using HSPICE. To predict the performance of the memory array for a variety of selectors, machine-learning algorithms are employed, using device characteristics and circuit simulation results as the training data. The influence of selector parameters on the 1S1R cell and array behavior is investigated and projected to large Gbit arrays. The machine learning methods enable time-efficient and accurate estimates of 1S1R array performance to guide large-scale memory design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的大规模1S1R阻性存储阵列性能预测
提出了一种分析器件电路特性和预测存储阵列性能的方法。通过对选择器件的五参数表征和RRAM的紧凑模型,我们能够捕获所报告的选择器件的行为,并使用HSPICE通过RRAM紧凑建模模拟1S1R单元/阵列性能。为了预测各种选择器的存储阵列的性能,采用机器学习算法,以器件特性和电路仿真结果作为训练数据。研究了选择器参数对1S1R单元和阵列性能的影响,并将其应用于大阵列。机器学习方法能够有效和准确地估计1S1R阵列的性能,以指导大规模存储器设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technology Trends and Near-Future Applications of Embedded STT-MRAM Junction Optimization for Embedded 40nm FN/FN Flash Memory Thin-Silicon Injector (TSI): An All-Silicon Engineered Barrier, Highly Nonlinear Selector for High Density Resistive RAM Applications Integration and Electrical Evaluation of Epitaxially Grown Si and SiGe Channels for Vertical NAND Memory Applications Critical ReRAM Stack Parameters Controlling Complimentary versus Bipolar Resistive Switching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1