Design, process integration and characterization of wafer level vacuum packaging for MEMS resonator

A. Yu, C. Premachandran, R. Nagarajan, C.W. Kyoung, Lam Quynh Trang, Rakesh Kumar, L. Lim, J. H. Han, Yap Guan Jie, P. Damaruganath
{"title":"Design, process integration and characterization of wafer level vacuum packaging for MEMS resonator","authors":"A. Yu, C. Premachandran, R. Nagarajan, C.W. Kyoung, Lam Quynh Trang, Rakesh Kumar, L. Lim, J. H. Han, Yap Guan Jie, P. Damaruganath","doi":"10.1109/ECTC.2010.5490754","DOIUrl":null,"url":null,"abstract":"This paper discusses wafer level vacuum sealing technology with evaporated AuSn solder for a microelectromechanical systems (MEMS) resonator without getter material. The MEMS resonator is fabricated and characterized in a vacuum chamber. Relationship between the Q-factor of the MEMS resonator and the vacuum level is established and used as a reference for later vacuum level calibration. Wafer bonding using evaporated AuSn solder is performed in an EVG wafer bonder. With optimized bonding conditions, the achieved shear strength is higher than 59 MPa and uniform cross-section of the bonding ring has been achieved. The calculated He leakage rate is between 10−13 atm cc/s and 10−14 atm cc/s. By comparing the measured Q-factor of packaged resonator with the reference curve, the corresponding vacuum level is 0.2 Torr. Reliability tests results show that shear strength decreases for 7% and still high enough for real application. The vacuum level after reliability tests is comparable to that of long term vacuum level.","PeriodicalId":429629,"journal":{"name":"2010 Proceedings 60th Electronic Components and Technology Conference (ECTC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Proceedings 60th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2010.5490754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper discusses wafer level vacuum sealing technology with evaporated AuSn solder for a microelectromechanical systems (MEMS) resonator without getter material. The MEMS resonator is fabricated and characterized in a vacuum chamber. Relationship between the Q-factor of the MEMS resonator and the vacuum level is established and used as a reference for later vacuum level calibration. Wafer bonding using evaporated AuSn solder is performed in an EVG wafer bonder. With optimized bonding conditions, the achieved shear strength is higher than 59 MPa and uniform cross-section of the bonding ring has been achieved. The calculated He leakage rate is between 10−13 atm cc/s and 10−14 atm cc/s. By comparing the measured Q-factor of packaged resonator with the reference curve, the corresponding vacuum level is 0.2 Torr. Reliability tests results show that shear strength decreases for 7% and still high enough for real application. The vacuum level after reliability tests is comparable to that of long term vacuum level.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEMS谐振器晶圆级真空封装的设计、制程整合与表征
本文讨论了无吸气剂材料的微机电系统(MEMS)谐振腔用蒸发AuSn焊料圆片级真空密封技术。MEMS谐振器是在真空室中制备和表征的。建立了MEMS谐振器的q因子与真空度之间的关系,作为后续真空度标定的参考。在EVG晶圆键合机中使用蒸发AuSn焊料进行晶圆键合。在优化的粘接条件下,获得的抗剪强度大于59 MPa,粘接环截面均匀。计算出He泄漏速率范围为10 ~ 13atm cc/s ~ 10 ~ 14atm cc/s。通过与参考曲线的比较,封装腔的q因子测量值为0.2 Torr。可靠性试验结果表明,抗剪强度降低7%,但仍能满足实际应用要求。可靠性试验后的真空度与长期真空度相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of CMOS-process-compatible interconnect technology for 3D-stacking of NAND flash memory chips Inductance properties of silicon-in-grown horizontal carbon nanotubes Direct chip powering and enhancement of proximity communication through Anisotropic Conductive adhesive chip-to-chip bonding Cost comparison for flip chip, gold wire bond, and copper wire bond packaging An investigation of reliability and solder joint microstructure evolution of select Pb-free FCBGA pad finish and solder ball alloy combinations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1