{"title":"Speed Sensorless Vector Control of Induction Motors Based on Robust Adaptive Variable Structure Control Law","authors":"O. Barambones, A. Garrido, F. Maseda, P. Alkorta","doi":"10.1109/ETFA.2006.355362","DOIUrl":null,"url":null,"abstract":"A novel sensorless adaptive robust control law is proposed to improve the trajectory tracking performance of induction motors. The proposed design employs the so called vector (or field oriented) control theory for the induction motor drives and the designed control law is based on an integral sliding-mode algorithm that overcomes the system uncertainties. The proposed sliding-mode control law incorporates an adaptive switching gain to avoid calculating an upper limit of the system uncertainties. The proposed design also includes a new method in order to estimate the rotor speed. In this method, the rotor speed estimation error is presented as a first order simple function based on the difference between the real stator currents and the estimated stator currents. The stability analysis of the proposed controller under parameter uncertainties and load disturbances is provided using the Lyapunov stability theory. Finally simulated results show, on the one hand that the proposed controller with the proposed rotor speed estimator provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to plant parameter variations and external load disturbances","PeriodicalId":431393,"journal":{"name":"2006 IEEE Conference on Emerging Technologies and Factory Automation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Emerging Technologies and Factory Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2006.355362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A novel sensorless adaptive robust control law is proposed to improve the trajectory tracking performance of induction motors. The proposed design employs the so called vector (or field oriented) control theory for the induction motor drives and the designed control law is based on an integral sliding-mode algorithm that overcomes the system uncertainties. The proposed sliding-mode control law incorporates an adaptive switching gain to avoid calculating an upper limit of the system uncertainties. The proposed design also includes a new method in order to estimate the rotor speed. In this method, the rotor speed estimation error is presented as a first order simple function based on the difference between the real stator currents and the estimated stator currents. The stability analysis of the proposed controller under parameter uncertainties and load disturbances is provided using the Lyapunov stability theory. Finally simulated results show, on the one hand that the proposed controller with the proposed rotor speed estimator provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to plant parameter variations and external load disturbances