Perceptual Quality Driven Adaptive Video Coding Using JND Estimation

Masaru Takeuchi, Shintaro Saika, Yusuke Sakamoto, Tatsuya Nagashima, Zhengxue Cheng, Kenji Kanai, J. Katto, Kaijin Wei, Ju Zengwei, Xu Wei
{"title":"Perceptual Quality Driven Adaptive Video Coding Using JND Estimation","authors":"Masaru Takeuchi, Shintaro Saika, Yusuke Sakamoto, Tatsuya Nagashima, Zhengxue Cheng, Kenji Kanai, J. Katto, Kaijin Wei, Ju Zengwei, Xu Wei","doi":"10.1109/PCS.2018.8456297","DOIUrl":null,"url":null,"abstract":"We introduce a perceptual video quality driven video encoding solution for optimized adaptive streaming. By using multiple bitrate/resolution encoding like MPEG-DASH, video streaming services can deliver the best video stream to a client, under the conditions of the client's available bandwidth and viewing device capability. However, conventional fixed encoding recipes (i.e., resolution-bitrate pairs) suffer from many problems, such as improper resolution selection and stream redundancy. To avoid these problems, we propose a novel video coding method, which generates multiple representations with constant JustNoticeable Difference (JND) interval. For this purpose, we developed a JND scale estimator using Support Vector Regression (SVR), and designed a pre-encoder which outputs an encoding recipe with constant JND interval in an adaptive manner to input video.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We introduce a perceptual video quality driven video encoding solution for optimized adaptive streaming. By using multiple bitrate/resolution encoding like MPEG-DASH, video streaming services can deliver the best video stream to a client, under the conditions of the client's available bandwidth and viewing device capability. However, conventional fixed encoding recipes (i.e., resolution-bitrate pairs) suffer from many problems, such as improper resolution selection and stream redundancy. To avoid these problems, we propose a novel video coding method, which generates multiple representations with constant JustNoticeable Difference (JND) interval. For this purpose, we developed a JND scale estimator using Support Vector Regression (SVR), and designed a pre-encoder which outputs an encoding recipe with constant JND interval in an adaptive manner to input video.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于JND估计的感知质量驱动自适应视频编码
我们提出了一种感知视频质量驱动的视频编码方案,用于优化自适应流媒体。通过使用像MPEG-DASH这样的多比特率/分辨率编码,视频流服务可以在客户端可用带宽和观看设备能力的条件下向客户端提供最佳视频流。然而,传统的固定编码方法(即分辨率-比特率对)存在许多问题,例如不正确的分辨率选择和流冗余。为了避免这些问题,我们提出了一种新的视频编码方法,该方法以恒定的justvisible Difference (JND)间隔生成多个表示。为此,我们利用支持向量回归(SVR)开发了JND尺度估计器,并设计了一个预编码器,该预编码器以自适应方式输出恒定JND间隔的编码配方来输入视频。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future Video Coding Technologies: A Performance Evaluation of AV1, JEM, VP9, and HM Joint Optimization of Rate, Distortion, and Maximum Absolute Error for Compression of Medical Volumes Using HEVC Intra Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme Detecting Source Video Artifacts with Supervised Sparse Filters Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1