Hierarchical Memory Diagnosis

G. Medeiros, M. Fieback, A. Gebregiorgis, M. Taouil, L. Bolzani, S. Hamdioui
{"title":"Hierarchical Memory Diagnosis","authors":"G. Medeiros, M. Fieback, A. Gebregiorgis, M. Taouil, L. Bolzani, S. Hamdioui","doi":"10.1109/ETS54262.2022.9810467","DOIUrl":null,"url":null,"abstract":"High-quality memory diagnosis methodologies are critical enablers for scaled memory devices as they reduce time to market and provide valuable information regarding test escapes and customer returns. This paper presents an efficient Hierarchical Memory Diagnosis (HMD) approach that accurately diagnoses faults in the entire memory. Faults are diagnosed hierarchically; first, their location, then their nature (i.e., static or dynamic), and finally, their functional fault model. The HMD approach leads to a more accurate diagnostic, enabling the precise identification of yield loss causes.","PeriodicalId":334931,"journal":{"name":"2022 IEEE European Test Symposium (ETS)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS54262.2022.9810467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-quality memory diagnosis methodologies are critical enablers for scaled memory devices as they reduce time to market and provide valuable information regarding test escapes and customer returns. This paper presents an efficient Hierarchical Memory Diagnosis (HMD) approach that accurately diagnoses faults in the entire memory. Faults are diagnosed hierarchically; first, their location, then their nature (i.e., static or dynamic), and finally, their functional fault model. The HMD approach leads to a more accurate diagnostic, enabling the precise identification of yield loss causes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分层记忆诊断
高质量的内存诊断方法是扩展内存设备的关键推动者,因为它们缩短了上市时间,并提供有关测试逃逸和客户返回的宝贵信息。提出了一种高效的层次记忆诊断方法,可以准确诊断整个记忆中的故障。故障分级诊断;首先是它们的位置,然后是它们的性质(即,静态或动态),最后是它们的功能故障模型。HMD方法可以进行更准确的诊断,能够精确识别产量损失的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AMS Test Vector Generation using AMS Verification and IEEE P1687.2 X-Masking for In-System Deterministic Test DFX: Exploring the Design Space for Quality ETS 2022 Foreword TaintLock: Preventing IP Theft through Lightweight Dynamic Scan Encryption using Taint Bits*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1