Decoding JPEG XS on a GPU

Volker Bruns, T. Richter, Bilal Ahmed, J. Keinert, S. Fößel
{"title":"Decoding JPEG XS on a GPU","authors":"Volker Bruns, T. Richter, Bilal Ahmed, J. Keinert, S. Fößel","doi":"10.1109/PCS.2018.8456310","DOIUrl":null,"url":null,"abstract":"JPEG XS is an upcoming lightweight image compression standard that is especially developed to meet the requirements of compressed video-over-IP use cases. It is designed with not only CPU, FPGA or ASIC platforms in mind, but explicitly also targets GPUs. Though not yet finished, the codec is now sufficiently mature to present a first NVIDIA CUDA-based GPU decoder architecture and preliminary performance results. On a 2014 mid-range GPU with 640 cores a 12 bit UHD 4:2:2 (4:4:4) can be decoded with 54 (42) fps. The algorithm scales very well: on a 2017 high-end GPU with 2560 cores the throughput increases to 190 (150) fps. In contrast, an optimized GPU-accelerated JPEG 2000 decoder takes 2x as long for high compression ratios that yield a PSNR of 40 dB and 3x as long for lower compression ratios with a PSNR of over 50 dB.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

JPEG XS is an upcoming lightweight image compression standard that is especially developed to meet the requirements of compressed video-over-IP use cases. It is designed with not only CPU, FPGA or ASIC platforms in mind, but explicitly also targets GPUs. Though not yet finished, the codec is now sufficiently mature to present a first NVIDIA CUDA-based GPU decoder architecture and preliminary performance results. On a 2014 mid-range GPU with 640 cores a 12 bit UHD 4:2:2 (4:4:4) can be decoded with 54 (42) fps. The algorithm scales very well: on a 2017 high-end GPU with 2560 cores the throughput increases to 190 (150) fps. In contrast, an optimized GPU-accelerated JPEG 2000 decoder takes 2x as long for high compression ratios that yield a PSNR of 40 dB and 3x as long for lower compression ratios with a PSNR of over 50 dB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在GPU上解码JPEG XS
JPEG XS是一种即将推出的轻量级图像压缩标准,它是专门为满足ip视频压缩用例的要求而开发的。它的设计不仅考虑了CPU, FPGA或ASIC平台,而且明确地针对gpu。虽然还没有完成,编解码器现在已经足够成熟,可以展示第一个基于NVIDIA cuda的GPU解码器架构和初步性能结果。在2014年具有640核的中档GPU上,12位UHD 4:2:2(4:4:4)可以以54 (42)fps解码。该算法可扩展性非常好:在2017年具有2560核的高端GPU上,吞吐量增加到190 (150)fps。相比之下,经过优化的gpu加速的JPEG 2000解码器对于产生40 dB的PSNR的高压缩比需要2倍的时间,对于产生超过50 dB的PSNR的低压缩比需要3倍的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future Video Coding Technologies: A Performance Evaluation of AV1, JEM, VP9, and HM Joint Optimization of Rate, Distortion, and Maximum Absolute Error for Compression of Medical Volumes Using HEVC Intra Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme Detecting Source Video Artifacts with Supervised Sparse Filters Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1