Evaluation of Machine Learning Algorithms for Anomaly Detection in Industrial Networks

Giuseppe Bernieri, M. Conti, F. Turrin
{"title":"Evaluation of Machine Learning Algorithms for Anomaly Detection in Industrial Networks","authors":"Giuseppe Bernieri, M. Conti, F. Turrin","doi":"10.1109/IWMN.2019.8805036","DOIUrl":null,"url":null,"abstract":"The cyber-physical security of Industrial Control Systems (ICSs) represents an actual and worthwhile research topic. In this paper, we compare and evaluate different Machine Learning (ML) algorithms for anomaly detection in industrial control networks. We analyze supervised and unsupervised ML-based anomaly detection approaches using datasets extracted from the Secure Water Treatment (SWaT), a testbed developed to emulate a scaled-down real industrial plant. Our experiments show strengths and limitations of the two ML-based anomaly detection approaches for industrial networks.","PeriodicalId":272577,"journal":{"name":"2019 IEEE International Symposium on Measurements & Networking (M&N)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Measurements & Networking (M&N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMN.2019.8805036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The cyber-physical security of Industrial Control Systems (ICSs) represents an actual and worthwhile research topic. In this paper, we compare and evaluate different Machine Learning (ML) algorithms for anomaly detection in industrial control networks. We analyze supervised and unsupervised ML-based anomaly detection approaches using datasets extracted from the Secure Water Treatment (SWaT), a testbed developed to emulate a scaled-down real industrial plant. Our experiments show strengths and limitations of the two ML-based anomaly detection approaches for industrial networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业网络异常检测的机器学习算法评价
工业控制系统的网络物理安全是一个具有现实意义和研究价值的课题。在本文中,我们比较和评估了不同的机器学习(ML)算法在工业控制网络中的异常检测。我们使用从安全水处理(SWaT)提取的数据集分析了有监督和无监督的基于ml的异常检测方法,SWaT是一个用于模拟按比例缩小的真实工业工厂的测试平台。我们的实验显示了两种基于机器学习的工业网络异常检测方法的优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a Novel Measurement Technique for Emulating Real Life Environment within a Semi Reverberating Chamber Indoor Location Services through Multi-Source Learning-based Radio Fingerprinting Techniques Passive Peak Voltage Sensor for Multiple Sending Coils Inductive Power Transmission System Evaluation of Machine Learning Algorithms for Anomaly Detection in Industrial Networks A measurement procedure for the optimization of a distributed indoor localization system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1