A measurement procedure for the optimization of a distributed indoor localization system

B. Andò, S. Baglio, S. Castorina, R. Crispino, V. Marletta
{"title":"A measurement procedure for the optimization of a distributed indoor localization system","authors":"B. Andò, S. Baglio, S. Castorina, R. Crispino, V. Marletta","doi":"10.1109/IWMN.2019.8804992","DOIUrl":null,"url":null,"abstract":"Location-based services and indoor navigation are just two examples of applications that can draw big advantages from indoor localization systems. Although there are different mature technology for the outdoor scenarios, a single accepted and reliable solution for the indoor case still lacks. Many technology have been investigated but the one promising the best accuracy in the position estimation is based on ultrasound. A solution developed in this context in introduced is this paper. A localization system is briefly discussed and, an assessment procedure, aimed at determining the optimal choice in designing a specific node of a Wireless Sensor Network composing the localization system, is addressed. In particular, the experimental assessment, was aimed at finding the optimal circuit parameter maximizing both the operative range and the noise rejection of an anchor node by investigating the maximum reading range variation and the accuracy of the reading itself as functions of a threshold value of a comparator stage. Results show that, if the application of interest requires to optimize the operating range of the localization system, the optimal working condition could be defined as the one assuring the maximum system specificity guaranteeing the largest operating range.","PeriodicalId":272577,"journal":{"name":"2019 IEEE International Symposium on Measurements & Networking (M&N)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Measurements & Networking (M&N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMN.2019.8804992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Location-based services and indoor navigation are just two examples of applications that can draw big advantages from indoor localization systems. Although there are different mature technology for the outdoor scenarios, a single accepted and reliable solution for the indoor case still lacks. Many technology have been investigated but the one promising the best accuracy in the position estimation is based on ultrasound. A solution developed in this context in introduced is this paper. A localization system is briefly discussed and, an assessment procedure, aimed at determining the optimal choice in designing a specific node of a Wireless Sensor Network composing the localization system, is addressed. In particular, the experimental assessment, was aimed at finding the optimal circuit parameter maximizing both the operative range and the noise rejection of an anchor node by investigating the maximum reading range variation and the accuracy of the reading itself as functions of a threshold value of a comparator stage. Results show that, if the application of interest requires to optimize the operating range of the localization system, the optimal working condition could be defined as the one assuring the maximum system specificity guaranteeing the largest operating range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式室内定位系统优化的测量程序
基于位置的服务和室内导航只是两个可以从室内定位系统中获得巨大优势的应用程序的例子。虽然针对室外场景有不同的成熟技术,但对于室内场景仍缺乏单一的可接受且可靠的解决方案。目前已经研究了许多技术,但在位置估计中精度最高的是基于超声的技术。本文介绍了在此背景下开发的一种解决方案。简要讨论了定位系统,并讨论了在设计无线传感器网络中组成定位系统的特定节点时确定最优选择的评估过程。特别是,实验评估旨在通过研究最大读数范围变化和读数本身的准确性作为比较器阶段阈值的函数,找到使锚节点的工作范围和噪声抑制最大化的最佳电路参数。结果表明,如果应用需要优化定位系统的工作范围,则可以将最优工作条件定义为保证最大系统专用性和最大工作范围的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a Novel Measurement Technique for Emulating Real Life Environment within a Semi Reverberating Chamber Indoor Location Services through Multi-Source Learning-based Radio Fingerprinting Techniques Passive Peak Voltage Sensor for Multiple Sending Coils Inductive Power Transmission System Evaluation of Machine Learning Algorithms for Anomaly Detection in Industrial Networks A measurement procedure for the optimization of a distributed indoor localization system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1