Low Power Spiking Neural Network Circuit with Compact Synapse and Neuron Cells

Malik Summair Asghar, Saad Arslan, Hyungwon Kim
{"title":"Low Power Spiking Neural Network Circuit with Compact Synapse and Neuron Cells","authors":"Malik Summair Asghar, Saad Arslan, Hyungwon Kim","doi":"10.1109/ISOCC50952.2020.9333105","DOIUrl":null,"url":null,"abstract":"Spiking neural networks performs efficient learning and recognition tasks by mimicking the neural biology of human brain. To realize a large-scale network on chip for mobile applications an area and power optimized electronic neuron along with synapse is essential. In this paper we present an analog CMOS based implementation of neuron and synapse circuits realized using 180nm process. The neurons integrate input currents from the synapse inputs and generate a spike output event based on the membrane potential. The proposed circuits have been optimized for area and power consumption and therefore can be used as key components to form a large spiking neural network.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9333105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Spiking neural networks performs efficient learning and recognition tasks by mimicking the neural biology of human brain. To realize a large-scale network on chip for mobile applications an area and power optimized electronic neuron along with synapse is essential. In this paper we present an analog CMOS based implementation of neuron and synapse circuits realized using 180nm process. The neurons integrate input currents from the synapse inputs and generate a spike output event based on the membrane potential. The proposed circuits have been optimized for area and power consumption and therefore can be used as key components to form a large spiking neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有紧密突触和神经元细胞的低功率脉冲神经网络电路
脉冲神经网络通过模仿人类大脑的神经生物学来执行有效的学习和识别任务。为了实现移动应用的大规模片上网络,一个面积和功率优化的电子神经元和突触是必不可少的。本文提出了一种基于模拟CMOS的神经元和突触电路的实现,采用180nm工艺实现。神经元整合来自突触输入的输入电流,产生基于膜电位的尖峰输出事件。所提出的电路在面积和功耗方面进行了优化,因此可以用作形成大型尖峰神经网络的关键元件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Quadcopters Flight Simulation Considering the Influence of Wind Design of a CMOS Current-mode Squaring Circuit for Training Analog Neural Networks Instant and Accurate Instance Segmentation Equipped with Path Aggregation and Attention Gate 13.56 MHz High-Efficiency Power Transmitter and Receiver for Wirelessly Powered Biomedical Implants Investigation on Synaptic Characteristics of Interfacial Phase Change Memory for Artificial Synapse Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1