Microwave arbitrary waveform generation based on optical spectral shaping and wavelength-to-time mapping using a chirped fiber Bragg grating

Chao Wang, J. Yao
{"title":"Microwave arbitrary waveform generation based on optical spectral shaping and wavelength-to-time mapping using a chirped fiber Bragg grating","authors":"Chao Wang, J. Yao","doi":"10.1109/MNRC.2008.4683377","DOIUrl":null,"url":null,"abstract":"We propose a novel technique to implement microwave arbitrary waveform generation (AWG) in the optical domain based on simultaneous optical spectral shaping and wavelength-to-time mapping in a single linearly chirped fiber Bragg grating (LCFBG). In the proposed approach, the spectrum of an ultrashort optical pulse generated by a mode-locked fiber laser is spectrally shaped and at the same time wavelength-to-time mapped by the LCFBG to generate a microwave pulse with a shape identical to that of the shaped optical spectrum. By designing the LCFBG to have an arbitrary reflection profile, a microwave arbitrary waveform is generated. The key component in the proposed system is the LCFBG. A simple and effective technique to synthesize the LCFBG with an arbitrary reflection response is proposed. An approximate model describing the microwave AWG is derived, which is verified by numerical simulations and a proof-of-concept experiment.","PeriodicalId":247684,"journal":{"name":"2008 1st Microsystems and Nanoelectronics Research Conference","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 1st Microsystems and Nanoelectronics Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNRC.2008.4683377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a novel technique to implement microwave arbitrary waveform generation (AWG) in the optical domain based on simultaneous optical spectral shaping and wavelength-to-time mapping in a single linearly chirped fiber Bragg grating (LCFBG). In the proposed approach, the spectrum of an ultrashort optical pulse generated by a mode-locked fiber laser is spectrally shaped and at the same time wavelength-to-time mapped by the LCFBG to generate a microwave pulse with a shape identical to that of the shaped optical spectrum. By designing the LCFBG to have an arbitrary reflection profile, a microwave arbitrary waveform is generated. The key component in the proposed system is the LCFBG. A simple and effective technique to synthesize the LCFBG with an arbitrary reflection response is proposed. An approximate model describing the microwave AWG is derived, which is verified by numerical simulations and a proof-of-concept experiment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光谱整形和啁啾光纤光栅波长-时间映射的微波任意波形生成
提出了一种在单线性啁啾光纤光栅(LCFBG)中同时实现光谱整形和波长-时间映射的光域微波任意波形产生(AWG)的新技术。在该方法中,锁模光纤激光器产生的超短光脉冲的光谱被光谱整形,同时由LCFBG进行波长-时间映射,从而产生与整形后的光谱形状相同的微波脉冲。通过设计具有任意反射剖面的LCFBG,可以产生微波任意波形。该系统的关键部件是LCFBG。提出了一种简单有效的合成具有任意反射响应的LCFBG的方法。推导了一个描述微波AWG的近似模型,并通过数值模拟和概念验证实验对其进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of parameter variations on the current-voltage behavior of AlGaAs tunnel junction models Hybrid integrated CMOS-microfluidic device for the detection and characterization of particles An improved simulation method for high-speed data transmission through electrical backplane All-digital skew-tolerant interfacing method for systems with rational frequency ratios among Multiple Clock Domains: Leveraging a priori timing information A CMOS Optical feedback control for high-speed DEP based microfluidic actuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1