{"title":"Methodology for the Assessment of the Text Similarity of Documents in the CORE Open Access Data Set of Scholarly Documents","authors":"Ivan Kovačič, David Bajs, M. Ojsteršek","doi":"10.18690/978-961-286-516-0.12","DOIUrl":null,"url":null,"abstract":"This paper describes the methodology of data preparation and analysis of the text similarity required for plagiarism detection on the CORE data set. Firstly, we used the CrossREF API and Microsoft Academic Graph data set for metadata enrichment and elimination of duplicates of doc-uments from the CORE 2018 data set. In the second step, we used 4-gram sequences of words from every document and transformed them into SHA-256 hash values. Features retrieved using hashing algorithm are compared, and the result is a list of documents and the percentages of cov-erage between pairs of documents features. In the third step, called pairwise feature-based ex-haustive analysis, pairs of documents are checked using the longest common substring.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18690/978-961-286-516-0.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes the methodology of data preparation and analysis of the text similarity required for plagiarism detection on the CORE data set. Firstly, we used the CrossREF API and Microsoft Academic Graph data set for metadata enrichment and elimination of duplicates of doc-uments from the CORE 2018 data set. In the second step, we used 4-gram sequences of words from every document and transformed them into SHA-256 hash values. Features retrieved using hashing algorithm are compared, and the result is a list of documents and the percentages of cov-erage between pairs of documents features. In the third step, called pairwise feature-based ex-haustive analysis, pairs of documents are checked using the longest common substring.