首页 > 最新文献

Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)最新文献

英文 中文
Adversarial Image Perturbation with a Genetic Algorithm 基于遗传算法的对抗性图像摄动
Pub Date : 2021-09-13 DOI: 10.18690/978-961-286-516-0.6
Rok Kukovec, Špela Pečnik, Iztok Fister Jr., S. Karakatič
The quality of image recognition with neural network models relies heavily on filters and parameters optimized through the training process. These filters are di˙erent compared to how humans see and recognize objects around them. The di˙erence in machine and human recognition yields a noticeable gap, which is prone to exploitation. The workings of these algorithms can be compromised with adversarial perturbations of images. This is where images are seemingly modified imperceptibly, such that humans see little to no di˙erence, but the neural network classifies t he m otif i ncorrectly. This paper explores the adversarial image modifica-tion with an evolutionary algorithm, so that the AlexNet convolutional neural network cannot recognize previously clear motifs while preserving the human perceptibility of the image. The ex-periment was implemented in Python and tested on the ILSVRC dataset. Original images and their recreated counterparts were compared and contrasted using visual assessment and statistical metrics. The findings s uggest t hat t he human eye, without prior knowledge, will hardly spot the di˙erence compared to the original images.
神经网络模型的图像识别质量很大程度上依赖于通过训练过程优化的滤波器和参数。与人类观察和识别周围物体的方式相比,这些过滤器是完全不同的。机器和人类识别的差异产生了明显的差距,这很容易被利用。这些算法的工作可能会受到图像对抗性扰动的影响。在这种情况下,图像似乎在不知不觉中被修改了,以至于人类几乎看不到差异,但神经网络将其分类为错误的。本文探讨了一种进化算法的对抗性图像修改,使AlexNet卷积神经网络在保留人类对图像的可感知性的同时,不能识别先前清晰的主题。实验在Python中实现,并在ILSVRC数据集上进行了测试。使用视觉评估和统计指标对原始图像和重建图像进行比较和对比。研究结果表明,在没有先验知识的情况下,人眼很难发现与原始图像相比的差异。
{"title":"Adversarial Image Perturbation with a Genetic Algorithm","authors":"Rok Kukovec, Špela Pečnik, Iztok Fister Jr., S. Karakatič","doi":"10.18690/978-961-286-516-0.6","DOIUrl":"https://doi.org/10.18690/978-961-286-516-0.6","url":null,"abstract":"The quality of image recognition with neural network models relies heavily on filters and parameters optimized through the training process. These filters are di˙erent compared to how humans see and recognize objects around them. The di˙erence in machine and human recognition yields a noticeable gap, which is prone to exploitation. The workings of these algorithms can be compromised with adversarial perturbations of images. This is where images are seemingly modified imperceptibly, such that humans see little to no di˙erence, but the neural network classifies t he m otif i ncorrectly. This paper explores the adversarial image modifica-tion with an evolutionary algorithm, so that the AlexNet convolutional neural network cannot recognize previously clear motifs while preserving the human perceptibility of the image. The ex-periment was implemented in Python and tested on the ILSVRC dataset. Original images and their recreated counterparts were compared and contrasted using visual assessment and statistical metrics. The findings s uggest t hat t he human eye, without prior knowledge, will hardly spot the di˙erence compared to the original images.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116150446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embedding Non-planar Graphs: Storage and Representation 嵌入非平面图形:存储和表示
Pub Date : 2021-09-13 DOI: 10.18690/978-961-286-516-0.13
Ðorže Klisura
In this paper, we propose a convention for repre-senting non-planar graphs and their least-crossing embeddings in a canonical way. We achieve this by using state-of-the-art tools such as canonical labelling of graphs, Nauty’s Graph6 string and combinatorial representations for planar graphs. To the best of our knowledge, this has not been done before. Besides, we implement the men-tioned procedure in a SageMath language and compute embeddings for certain classes of cubic, vertex-transitive and general graphs. Our main contribution is an extension of one of the graph data sets hosted on MathDataHub, and towards extending the SageMath codebase.
在本文中,我们提出了用规范的方式表示非平面图形及其最小交叉嵌入的一种约定。我们通过使用最先进的工具,如图形的规范标记,Nauty的Graph6字符串和平面图形的组合表示来实现这一点。据我们所知,以前还没有这样做过。此外,我们还在SageMath语言中实现了上述过程,并计算了某些类型的三次图、顶点传递图和一般图的嵌入。我们的主要贡献是扩展了托管在MathDataHub上的一个图数据集,并扩展了SageMath代码库。
{"title":"Embedding Non-planar Graphs: Storage and Representation","authors":"Ðorže Klisura","doi":"10.18690/978-961-286-516-0.13","DOIUrl":"https://doi.org/10.18690/978-961-286-516-0.13","url":null,"abstract":"In this paper, we propose a convention for repre-senting non-planar graphs and their least-crossing embeddings in a canonical way. We achieve this by using state-of-the-art tools such as canonical labelling of graphs, Nauty’s Graph6 string and combinatorial representations for planar graphs. To the best of our knowledge, this has not been done before. Besides, we implement the men-tioned procedure in a SageMath language and compute embeddings for certain classes of cubic, vertex-transitive and general graphs. Our main contribution is an extension of one of the graph data sets hosted on MathDataHub, and towards extending the SageMath codebase.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127417276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
System for Remote Collaborative Embedded Development 远程协同嵌入式开发系统
Pub Date : 2021-09-13 DOI: 10.18690/978-961-286-516-0.4
Martin Domajnko, Nikola Glavina, Aljaž Žel
This paper explores the challenges and devised solutions for embedded development which arose during the COVID-19 pandemic. While software development, nowadays with modern tools and services such as git, virtual machines and commu-nication suits, is relatively una˙ected by resource location. That is not the case for firmware and embedded systems, which relies on physical hard-ware for design, development, and testing. To overcome the limitations of remote work and ob-structed access to actual hardware, two ideas were implemented and tested. First, based on inte-grated circuit emulation using QEMU to emulate an ARM core and custom software to facilitate communication with the embedded system. Sec-ond, remote programming and debugging over the internet with a dedicated computer system acting as a middle man between a development environ-ment and physical hardware using OpenOCD de-bugger.
本文探讨了2019冠状病毒病大流行期间嵌入式开发面临的挑战和设计的解决方案。而软件开发,如今有了现代工具和服务,如git、虚拟机和通信套件,相对来说不受资源位置的影响。固件和嵌入式系统的情况并非如此,它们依赖于物理硬件进行设计、开发和测试。为了克服远程工作和对象结构化访问实际硬件的限制,实现并测试了两个想法。首先,基于集成电路仿真,利用QEMU对ARM内核和定制软件进行仿真,方便与嵌入式系统通信。第二,使用专用的计算机系统作为开发环境和使用OpenOCD调试器的物理硬件之间的中间人,通过互联网进行远程编程和调试。
{"title":"System for Remote Collaborative Embedded Development","authors":"Martin Domajnko, Nikola Glavina, Aljaž Žel","doi":"10.18690/978-961-286-516-0.4","DOIUrl":"https://doi.org/10.18690/978-961-286-516-0.4","url":null,"abstract":"This paper explores the challenges and devised solutions for embedded development which arose during the COVID-19 pandemic. While software development, nowadays with modern tools and services such as git, virtual machines and commu-nication suits, is relatively una˙ected by resource location. That is not the case for firmware and embedded systems, which relies on physical hard-ware for design, development, and testing. To overcome the limitations of remote work and ob-structed access to actual hardware, two ideas were implemented and tested. First, based on inte-grated circuit emulation using QEMU to emulate an ARM core and custom software to facilitate communication with the embedded system. Sec-ond, remote programming and debugging over the internet with a dedicated computer system acting as a middle man between a development environ-ment and physical hardware using OpenOCD de-bugger.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114271030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methodology for the Assessment of the Text Similarity of Documents in the CORE Open Access Data Set of Scholarly Documents 核心开放存取学术文献数据集中文献文本相似度评估方法研究
Pub Date : 2021-09-13 DOI: 10.18690/978-961-286-516-0.12
Ivan Kovačič, David Bajs, M. Ojsteršek
This paper describes the methodology of data preparation and analysis of the text similarity required for plagiarism detection on the CORE data set. Firstly, we used the CrossREF API and Microsoft Academic Graph data set for metadata enrichment and elimination of duplicates of doc-uments from the CORE 2018 data set. In the second step, we used 4-gram sequences of words from every document and transformed them into SHA-256 hash values. Features retrieved using hashing algorithm are compared, and the result is a list of documents and the percentages of cov-erage between pairs of documents features. In the third step, called pairwise feature-based ex-haustive analysis, pairs of documents are checked using the longest common substring.
本文描述了在CORE数据集上进行抄袭检测所需的数据准备和文本相似度分析的方法。首先,我们使用CrossREF API和Microsoft Academic Graph数据集对CORE 2018数据集的元数据进行丰富和消除重复的文档。在第二步中,我们使用来自每个文档的4克单词序列,并将它们转换为SHA-256哈希值。比较使用散列算法检索的特征,结果是文档列表和文档特征对之间的覆盖率百分比。在第三步中,称为基于成对特征的详尽分析,使用最长的公共子字符串检查文档对。
{"title":"Methodology for the Assessment of the Text Similarity of Documents in the CORE Open Access Data Set of Scholarly Documents","authors":"Ivan Kovačič, David Bajs, M. Ojsteršek","doi":"10.18690/978-961-286-516-0.12","DOIUrl":"https://doi.org/10.18690/978-961-286-516-0.12","url":null,"abstract":"This paper describes the methodology of data preparation and analysis of the text similarity required for plagiarism detection on the CORE data set. Firstly, we used the CrossREF API and Microsoft Academic Graph data set for metadata enrichment and elimination of duplicates of doc-uments from the CORE 2018 data set. In the second step, we used 4-gram sequences of words from every document and transformed them into SHA-256 hash values. Features retrieved using hashing algorithm are compared, and the result is a list of documents and the percentages of cov-erage between pairs of documents features. In the third step, called pairwise feature-based ex-haustive analysis, pairs of documents are checked using the longest common substring.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126233596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extraction and Analysis of Sport Activity Data Inside Certain Area 某区域内体育活动数据的提取与分析
Pub Date : 2021-09-13 DOI: 10.18690/978-961-286-516-0.11
Luka Lukač
Nowadays, sport data analysis is one of the cru-cial factors, used to enhance the athletes’ per-formance, which can depend upon many di˙er-ent circumstances. One of those is the area of an exercise, which can dramatically impact on an athlete’s performance. Since not enough devotion has been given to this topic, this study focuses on extracting and analysing parts of exercises, which take place inside of a specific area, using principles from another part of Computer Science, Compu-tational Geometry.
如今,运动数据分析是提高运动员成绩的关键因素之一,这取决于许多不同的情况。其中之一是运动的区域,这对运动员的表现有很大的影响。由于对这个主题的投入不够,本研究的重点是提取和分析练习的部分内容,这些练习发生在特定区域内,使用计算机科学的另一部分,计算几何的原理。
{"title":"Extraction and Analysis of Sport Activity Data Inside Certain Area","authors":"Luka Lukač","doi":"10.18690/978-961-286-516-0.11","DOIUrl":"https://doi.org/10.18690/978-961-286-516-0.11","url":null,"abstract":"Nowadays, sport data analysis is one of the cru-cial factors, used to enhance the athletes’ per-formance, which can depend upon many di˙er-ent circumstances. One of those is the area of an exercise, which can dramatically impact on an athlete’s performance. Since not enough devotion has been given to this topic, this study focuses on extracting and analysing parts of exercises, which take place inside of a specific area, using principles from another part of Computer Science, Compu-tational Geometry.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126458593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analiza sentimenta komentarjev hotelov z uporabo slovarjev in metode Naivni Bayes
Pub Date : 2021-09-13 DOI: 10.18690/978-961-286-516-0.15
Nina Murks, Anže Omerzu, Borko Bošković
V £lanku smo predstavili pristop k analizi sen-timenta komentarjev hotelskih gostov s pomo£jo slovarjev in metode Naivni Bayes. Najprej smo zgradili slovarja sentimenta, ki sta vsebovala n-grame, ter njihove verjetnosti, da pripadajo pozi-tivnemu ali negativnemu razredu. Nato smo s po-mo£jo zgrajenih slovarjev klasificirali komentarje hotelov, pri £emer smo uporabili metodo Naivni Bayes. Pri klasifikaciji komentarjev s mo ra£u-nali klasifikacijske vrednosti o z. verjetnosti, da so posamezni komentarji pozitivni ali negativni. Komentarje smo klasificirali s p omo£jo unigra-mov in bigramov, ter rezultate primerjali z re-zultati iz literature. Pri unigramih smo dosegli natan£nost 0,92, pri bigramih je natan£nost zna-šala 0,80. Klasifikacijske v rednosti posameznih komentarjev smo si shranili, pri £emer smo pri komentarjih, ki smo jih klacificirali kot negativne, dodali negativen predznak. Predzna£ene klasifi-kacijske vrednosti smo nato sešteli, za vsak hotel ter na tak na£in izra£unali hotelom pripadajo£e to£ke. To£ke hotelov so v našem primeru poka-zatelj splošnega zadovoljstva hotelskih gostov, ki ga najdemo v komentarjih. Glede na to£ke smo hotele uredili po vrsti in prišli do lestvice hote-lov, pri katerih najdemo najbolj pozitivne komen-tarje.
在本文中,我们介绍了一种使用词典和 Naive Bayes 方法分析酒店客人评论情感的方法。首先,我们构建了情感词典,其中包含 n 个语法及其属于正面或负面类别的概率。然后,利用建立的词典,我们采用 Naive Bayes 方法对酒店评论进行分类。在对评论进行分类时,我们可以使用分类值来找出每条评论属于正面或负面的概率。我们使用单字符和双字符对评论进行了分类,并将结果与文献中的结果进行了比较。单字词分类的准确率为 0.92,双字词分类的准确率为 0.80。我们存储了单条评论的分类规律,并在分类为负面的评论上添加了负号。然后,我们将每家酒店的分类值相加,计算出分配给酒店的分数。在我们的案例中,酒店分数是酒店客人整体满意度的一个指标,可以在评论中找到。根据得分,我们对酒店进行了排序,得出了正面评论最多的酒店排名。
{"title":"Analiza sentimenta komentarjev hotelov z uporabo slovarjev in metode Naivni Bayes","authors":"Nina Murks, Anže Omerzu, Borko Bošković","doi":"10.18690/978-961-286-516-0.15","DOIUrl":"https://doi.org/10.18690/978-961-286-516-0.15","url":null,"abstract":"V £lanku smo predstavili pristop k analizi sen-timenta komentarjev hotelskih gostov s pomo£jo slovarjev in metode Naivni Bayes. Najprej smo zgradili slovarja sentimenta, ki sta vsebovala n-grame, ter njihove verjetnosti, da pripadajo pozi-tivnemu ali negativnemu razredu. Nato smo s po-mo£jo zgrajenih slovarjev klasificirali komentarje hotelov, pri £emer smo uporabili metodo Naivni Bayes. Pri klasifikaciji komentarjev s mo ra£u-nali klasifikacijske vrednosti o z. verjetnosti, da so posamezni komentarji pozitivni ali negativni. Komentarje smo klasificirali s p omo£jo unigra-mov in bigramov, ter rezultate primerjali z re-zultati iz literature. Pri unigramih smo dosegli natan£nost 0,92, pri bigramih je natan£nost zna-šala 0,80. Klasifikacijske v rednosti posameznih komentarjev smo si shranili, pri £emer smo pri komentarjih, ki smo jih klacificirali kot negativne, dodali negativen predznak. Predzna£ene klasifi-kacijske vrednosti smo nato sešteli, za vsak hotel ter na tak na£in izra£unali hotelom pripadajo£e to£ke. To£ke hotelov so v našem primeru poka-zatelj splošnega zadovoljstva hotelskih gostov, ki ga najdemo v komentarjih. Glede na to£ke smo hotele uredili po vrsti in prišli do lestvice hote-lov, pri katerih najdemo najbolj pozitivne komen-tarje.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133192729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Representative Web Performance Measurements with Google Lighthouse 走向具有代表性的Web性能测量与谷歌灯塔
Pub Date : 2021-09-13 DOI: 10.18690/978-961-286-516-0.9
Tjaša Heričko, Boštjan Šumak, Saša Brdnik
Web performance testing with tools such as Google Lighthouse is a common task in software practice and research. However, variability in time-based performance measurement results is observed quickly when using the tool, even if the website has not changed. This can occur due to variability in the network, web, and client devices. In this paper, we investigated how this challenge was addressed in the existing literature. Furthermore, an experiment was conducted, highlighting how unrepresentative measurements can result from single runs; thus, researchers and practitioners are advised to run performance tests multiple times and use an aggregation value. Based on the empirical results, 5 consecutive runs using a median to aggregate results reduce variability greatly, and can be performed in a reasonable time. The study’s findings alert to p otential pitfalls when using single run-based measurement results and serve as guidelines for future use of the tool.
使用Google Lighthouse等工具进行Web性能测试是软件实践和研究中的一项常见任务。然而,使用该工具时,即使网站没有改变,也可以快速观察到基于时间的性能测量结果的可变性。这可能是由于网络、web和客户端设备的可变性造成的。在本文中,我们研究了现有文献中如何解决这一挑战。此外,进行了一项实验,突出了单次运行如何导致不具代表性的测量结果;因此,建议研究人员和实践者多次运行性能测试并使用聚合值。根据实证结果,使用中位数对结果进行连续5次运行,大大降低了变异性,并且可以在合理的时间内进行。该研究的发现在使用基于单次运行的测量结果时提醒了潜在的缺陷,并为将来使用该工具提供了指导。
{"title":"Towards Representative Web Performance Measurements with Google Lighthouse","authors":"Tjaša Heričko, Boštjan Šumak, Saša Brdnik","doi":"10.18690/978-961-286-516-0.9","DOIUrl":"https://doi.org/10.18690/978-961-286-516-0.9","url":null,"abstract":"Web performance testing with tools such as Google Lighthouse is a common task in software practice and research. However, variability in time-based performance measurement results is observed quickly when using the tool, even if the website has not changed. This can occur due to variability in the network, web, and client devices. In this paper, we investigated how this challenge was addressed in the existing literature. Furthermore, an experiment was conducted, highlighting how unrepresentative measurements can result from single runs; thus, researchers and practitioners are advised to run performance tests multiple times and use an aggregation value. Based on the empirical results, 5 consecutive runs using a median to aggregate results reduce variability greatly, and can be performed in a reasonable time. The study’s findings alert to p otential pitfalls when using single run-based measurement results and serve as guidelines for future use of the tool.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129044543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Analiza ritmičnosti števnih podatkov z uporabo modela cosinor 利用余弦模型对计数数据进行节律分析
Pub Date : 2021-09-13 DOI: 10.18690/978-961-286-516-0.14
Nina Velikajne, Miha Moškon
Analiza ritmi£nosti števnih podatkov je postala pomembna v mnogih vidikih znanosti, inženirstva in celo ekonomije. Obstajajo metode z namenom detekcije ritmi£nosti zveznih podatkov, ki pa ve£i-noma niso primerne za analizo števnih podatkov. V prispevku predstavimo metodologijo, ki omo-go£a analizo ritmi£nosti v števnih podatkih. Me-toda združuje metodo cosinor z uporabo razli£-nih ra£unskih regresijskih modelov, ki so primerni za analizo števnih podatkov. Omogo£a tako de-tekcijo ritma kot tudi ocenitev parametrov ritma, primerjavo zgrajenih modelov in iskanje optimal-nega števila komponent za metodo cosinor ter is-kanje najbolj ustreznega tipa števnega modela. Vzpostavljena metoda omogo£a primerjavo zazna-nega ritma v odvisnosti od razli£nih parametrov ritmi£nosti in izra£un njihovih intervalov zaupa-nja. Celotno metodologijo smo testirali na te-denski periodi£nosti realnih podatkov COVID-19 obolenj v Sloveniji.
数字数据的节律性分析在科学、工程甚至经济学的许多方面都变得非常重要。有一些方法可以检测连续数据的节律性,但大多数方法都不适合分析数值数据。在本文中,我们提出了一种可以分析计数数据节律性的方法。该方法将 cosinor 方法与适用于计数数据分析的不同回归模型相结合。该方法既能检测节律,又能估算节律参数,还能比较所构建的模型,寻找 cosinor 方法的最佳成分数,以及找到最合适的计数模型类型。所建立的方法可以根据不同的节律参数对检测到的节律进行比较,并计算其置信区间。整个方法在斯洛文尼亚 COVID-19 的真实数据上进行了测试。
{"title":"Analiza ritmičnosti števnih podatkov z uporabo modela cosinor","authors":"Nina Velikajne, Miha Moškon","doi":"10.18690/978-961-286-516-0.14","DOIUrl":"https://doi.org/10.18690/978-961-286-516-0.14","url":null,"abstract":"Analiza ritmi£nosti števnih podatkov je postala pomembna v mnogih vidikih znanosti, inženirstva in celo ekonomije. Obstajajo metode z namenom detekcije ritmi£nosti zveznih podatkov, ki pa ve£i-noma niso primerne za analizo števnih podatkov. V prispevku predstavimo metodologijo, ki omo-go£a analizo ritmi£nosti v števnih podatkih. Me-toda združuje metodo cosinor z uporabo razli£-nih ra£unskih regresijskih modelov, ki so primerni za analizo števnih podatkov. Omogo£a tako de-tekcijo ritma kot tudi ocenitev parametrov ritma, primerjavo zgrajenih modelov in iskanje optimal-nega števila komponent za metodo cosinor ter is-kanje najbolj ustreznega tipa števnega modela. Vzpostavljena metoda omogo£a primerjavo zazna-nega ritma v odvisnosti od razli£nih parametrov ritmi£nosti in izra£un njihovih intervalov zaupa-nja. Celotno metodologijo smo testirali na te-denski periodi£nosti realnih podatkov COVID-19 obolenj v Sloveniji.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134457999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interactive Evolutionary Computation Approach to Permutation Flow Shop Scheduling Problem 置换流水车间调度问题的交互进化计算方法
Pub Date : 2021-09-13 DOI: 10.18690/978-961-286-516-0.8
Vid Keršič
Artificial intelligence and its subfields have be-come part of our everyday lives and eÿciently solve many problems that are very hard for us humans. But in some tasks, these methods strug-gle, while we, humans, are much better solvers with our intuition. Because of that, the ques-tion arises: why not combine intelligent methods with human skills and intuition? This paper pro-poses an Interactive Evolutionary Computation approach to the Permutation Flow Shop Schedul-ing Problem by incorporating human-in-the-loop in MAX-MIN Ant System through gamification of the problem. The analysis shows that combin-ing the evolutionary computation approach and human-in-the-loop leads to better solutions, sig-nificantly when the complexity of the problem in-creases.
人工智能及其子领域已经成为我们日常生活的一部分,eÿciently解决了许多对我们人类来说非常困难的问题。但在某些任务中,这些方法很难解决,而我们人类凭借直觉是更好的解决者。正因为如此,问题出现了:为什么不将智能方法与人类的技能和直觉结合起来呢?本文通过对置换流水车间调度问题的博弈化,提出了一种交互式进化计算方法,将人在环问题引入到MAX-MIN蚂蚁系统中。分析表明,当问题的复杂性增加时,将进化计算方法与人在环相结合可以得到更好的解决方案。
{"title":"Interactive Evolutionary Computation Approach to Permutation Flow Shop Scheduling Problem","authors":"Vid Keršič","doi":"10.18690/978-961-286-516-0.8","DOIUrl":"https://doi.org/10.18690/978-961-286-516-0.8","url":null,"abstract":"Artificial intelligence and its subfields have be-come part of our everyday lives and eÿciently solve many problems that are very hard for us humans. But in some tasks, these methods strug-gle, while we, humans, are much better solvers with our intuition. Because of that, the ques-tion arises: why not combine intelligent methods with human skills and intuition? This paper pro-poses an Interactive Evolutionary Computation approach to the Permutation Flow Shop Schedul-ing Problem by incorporating human-in-the-loop in MAX-MIN Ant System through gamification of the problem. The analysis shows that combin-ing the evolutionary computation approach and human-in-the-loop leads to better solutions, sig-nificantly when the complexity of the problem in-creases.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123339894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Artefact Elimination in High Density Electromyograms by Independent Component Analysis 通过独立成分分析消除高密度肌电图中的伪影
Pub Date : 2021-09-13 DOI: 10.18690/978-961-286-516-0.1
Aljaž Frančič, A. Holobar, M. Zorman
{"title":"On Artefact Elimination in High Density Electromyograms by Independent Component Analysis","authors":"Aljaž Frančič, A. Holobar, M. Zorman","doi":"10.18690/978-961-286-516-0.1","DOIUrl":"https://doi.org/10.18690/978-961-286-516-0.1","url":null,"abstract":"<jats:p />","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126350389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1