Factors Affecting Forecast Accuracy of Individual Stocks: SVR Algorithm Under CAPM Framework

B. T. Khoa, T. Huynh
{"title":"Factors Affecting Forecast Accuracy of Individual Stocks: SVR Algorithm Under CAPM Framework","authors":"B. T. Khoa, T. Huynh","doi":"10.1109/ICONAT53423.2022.9725916","DOIUrl":null,"url":null,"abstract":"The research was carried out with two objectives, including applying the algorithm under the Capital Asset Pricing Model framework (CAPM) to predict individual stocks' return rates and determine the factors affecting the difference in Error for each stock. This study experimented on the Ho Chi Minh City Stock Exchange (HOSE) in the period from 12/2012 to 9/2020 with two stages; in which stage 1 is used to determine the optimal parameters in the Vector Regression algorithm (SVR), and stage 2 is used to test the predictive efficiency by rolling window method. The study pointed that the predictive model using SVR is more effective than CAPM; moreover, the study finds that the specific risk factors (VAR), the overall risk (SD), and the accuracy of CAPM (RMSECAPM) are the factors affecting the difference in the forecast error of the SVR model for individual stocks","PeriodicalId":377501,"journal":{"name":"2022 International Conference for Advancement in Technology (ICONAT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference for Advancement in Technology (ICONAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONAT53423.2022.9725916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The research was carried out with two objectives, including applying the algorithm under the Capital Asset Pricing Model framework (CAPM) to predict individual stocks' return rates and determine the factors affecting the difference in Error for each stock. This study experimented on the Ho Chi Minh City Stock Exchange (HOSE) in the period from 12/2012 to 9/2020 with two stages; in which stage 1 is used to determine the optimal parameters in the Vector Regression algorithm (SVR), and stage 2 is used to test the predictive efficiency by rolling window method. The study pointed that the predictive model using SVR is more effective than CAPM; moreover, the study finds that the specific risk factors (VAR), the overall risk (SD), and the accuracy of CAPM (RMSECAPM) are the factors affecting the difference in the forecast error of the SVR model for individual stocks
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
影响个股预测准确性的因素:CAPM框架下的SVR算法
本研究有两个目标,一是在资本资产定价模型(CAPM)框架下应用该算法预测个股收益率,二是确定影响个股误差差异的因素。本研究在2012年12月至2020年9月期间对胡志明市证券交易所(HOSE)进行了两个阶段的实验;其中,第一阶段用于确定向量回归算法(SVR)的最优参数,第二阶段用于测试滚动窗方法的预测效率。研究表明,使用SVR的预测模型比CAPM更有效;此外,研究发现,具体风险因素(VAR)、整体风险因素(SD)和CAPM的准确性(RMSECAPM)是影响SVR模型对个股预测误差差异的因素
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Security Using Multiple Image Steganography and Hybrid Data Encryption Techniques Analysis of Signal Integrity in Coupled MWCNT and Comparison with Copper Interconnects Operational Constraints Governed Loadability Characteristics of EHV/UHV Transmission Lines Gait Step Length Classification Using Force Myography Face Recognition utilizing Novel Face Descriptor & Algorithm of Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1