Modelos para Previsão Tributária Utilizando Redes Neurais LSTM

Arthur F. Dornelas, L. D. Campos, Karla Figueiredo
{"title":"Modelos para Previsão Tributária Utilizando Redes Neurais LSTM","authors":"Arthur F. Dornelas, L. D. Campos, Karla Figueiredo","doi":"10.5753/eniac.2022.227595","DOIUrl":null,"url":null,"abstract":"O ICMS (Imposto sobre Circulação de Mercadorias e Prestação de Serviços de Transporte Interestadual e Intermunicipal e de Comunicação) é um dos principais impostos arrecadados pelos estados brasileiros, sendo seu valor importante na gestão e planejamento do governo, em especial para o estado do Rio de Janeiro, que se apresenta em crise econômica e desde o ano 2020 está em Regime de Recuperação Fiscal, necessitando de uma constante atualização da previsão de seus valores de receita e gastos. Devido às incertezas e mudanças externas e internas no estado carioca, a previsão desse valor coletado possui característica de não-linearidade, sendo necessário a aplicação de modelos não lineares que possam considerar essas mudanças nos valores arrecadados ao longo do tempo. Por conseguinte, o trabalho aqui descrito visa utilizar modelos de Redes Neurais Recorrentes Long Short-Term Memory (LSTM) e comparar as abordagens Multivariate Multi-step e Univariate Multi-step, na tentativa de gerar uma previsão anual da arrecadação tributária do estado superior à de outras abordagens, podendo ser utilizados como parâmetros para a tomada de decisões das autoridades governamentais.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

O ICMS (Imposto sobre Circulação de Mercadorias e Prestação de Serviços de Transporte Interestadual e Intermunicipal e de Comunicação) é um dos principais impostos arrecadados pelos estados brasileiros, sendo seu valor importante na gestão e planejamento do governo, em especial para o estado do Rio de Janeiro, que se apresenta em crise econômica e desde o ano 2020 está em Regime de Recuperação Fiscal, necessitando de uma constante atualização da previsão de seus valores de receita e gastos. Devido às incertezas e mudanças externas e internas no estado carioca, a previsão desse valor coletado possui característica de não-linearidade, sendo necessário a aplicação de modelos não lineares que possam considerar essas mudanças nos valores arrecadados ao longo do tempo. Por conseguinte, o trabalho aqui descrito visa utilizar modelos de Redes Neurais Recorrentes Long Short-Term Memory (LSTM) e comparar as abordagens Multivariate Multi-step e Univariate Multi-step, na tentativa de gerar uma previsão anual da arrecadação tributária do estado superior à de outras abordagens, podendo ser utilizados como parâmetros para a tomada de decisões das autoridades governamentais.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用LSTM神经网络的税收预测模型
的培训(运动商品和服务税州际公路和市政交通和通信)是一种主要由成员巴西税收,政府规划和管理中的重要价值,在特别的里约热内卢,凭借在经济危机,从2020年开始在财政经济复苏计划,需要不断的更新值的预测收入和支出。由于里约热内卢州的不确定性和外部和内部变化,这一收集值的预测具有非线性特征,需要应用非线性模型来考虑这些随时间收集的值的变化。因此本文描述的工作大量长期使用神经网络模型短期记忆(LSTM Multivariate多步方法)比较,Univariate多步时,生成一个国家税收的年度预测更高的其他方法,可以作为政府决策的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Learned OWA Operators in Pooling and Channel Aggregation Layers in Convolutional Neural Networks Improving steel making off-gas predictions by mixing classification and regression multi-modal multivariate models A Framework for prediction of dropout in distance learning through XAI techniques in Virtual Learning Environment Textile defect detection using YOLOv5 on AITEX Dataset Aspects of a learned model to predict the quality of life of university students in Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1