Risk-aware Trajectory Planning in Urban Environments with Safe Emergency Landing Guarantee

Jakub Sláma, Petr Váňa, J. Faigl
{"title":"Risk-aware Trajectory Planning in Urban Environments with Safe Emergency Landing Guarantee","authors":"Jakub Sláma, Petr Váňa, J. Faigl","doi":"10.1109/CASE49439.2021.9551407","DOIUrl":null,"url":null,"abstract":"In-flight aircraft failures are never avoidable entirely, inducing a significant risk to people and properties on the ground in an urban environment. Existing risk-aware trajectory planning approaches minimize the risk by determining trajectories that might result in less damage in the case of failure. However, the risk of the loss of thrust can be eliminated by executing a safe emergency landing if a landing site is reachable. Therefore, we propose a novel risk-aware trajectory planning that minimizes the risk to people on the ground while an option of a safe emergency landing in the case of loss of thrust is guaranteed. The proposed method has been empirically evaluated on a realistic urban scenario. Based on the reported results, an improvement in the risk reduction is achieved compared to the shortest and risk-aware only trajectory. The proposed risk-aware planning with safe emergency landing seems to be suitable trajectory planning for urban air mobility.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In-flight aircraft failures are never avoidable entirely, inducing a significant risk to people and properties on the ground in an urban environment. Existing risk-aware trajectory planning approaches minimize the risk by determining trajectories that might result in less damage in the case of failure. However, the risk of the loss of thrust can be eliminated by executing a safe emergency landing if a landing site is reachable. Therefore, we propose a novel risk-aware trajectory planning that minimizes the risk to people on the ground while an option of a safe emergency landing in the case of loss of thrust is guaranteed. The proposed method has been empirically evaluated on a realistic urban scenario. Based on the reported results, an improvement in the risk reduction is achieved compared to the shortest and risk-aware only trajectory. The proposed risk-aware planning with safe emergency landing seems to be suitable trajectory planning for urban air mobility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于安全应急着陆保障的城市环境风险感知轨迹规划
飞行中的飞机故障永远无法完全避免,在城市环境中对地面上的人员和财产造成重大风险。现有的风险感知轨迹规划方法通过确定在故障情况下可能导致更少损害的轨迹来最大限度地降低风险。然而,如果着陆地点可以到达,可以通过执行安全紧急着陆来消除失去推力的风险。因此,我们提出了一种新的风险感知轨迹规划,该规划在保证失去推力情况下安全紧急着陆的同时,最大限度地降低了地面人员的风险。所提出的方法已在一个现实的城市情景中进行了实证评估。根据报告的结果,与最短且仅具有风险意识的轨迹相比,在降低风险方面取得了进步。提出的安全紧急着陆风险意识规划是适合城市空中机动的轨道规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1