Comparative analysis of power amplifiers' polynomial based models identification using RLS algorithm

A. Abdelhafiz, F. Ghannouchi, O. Hammi, A. Zerguine
{"title":"Comparative analysis of power amplifiers' polynomial based models identification using RLS algorithm","authors":"A. Abdelhafiz, F. Ghannouchi, O. Hammi, A. Zerguine","doi":"10.1109/ICEDSA.2016.7818526","DOIUrl":null,"url":null,"abstract":"This paper investigates the performance of RF power amplifiers' behavioral models in the context of the adaptive model coefficients' identification. The forward twin-nonlinear two-box (TNTB) model is compared to the memory polynomial and orthogonal memory polynomial models. The study, performed using measured data of a Doherty power amplifier prototype driven by multi-carrier signals, highlights the complexity reduction provided by the TNTB model in comparison with the two other models. The results show the superiority of the TNTB model in the context of adaptive parameter-estimation as it leads to better normalized mean squared error while requiring a substantially lower number of parameters. Furthermore, the TNTB model requires less parameters for its identification, and thus less power consumption for its estimation. This makes this model suitable for implementation in energy efficient green communication systems.","PeriodicalId":247318,"journal":{"name":"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEDSA.2016.7818526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates the performance of RF power amplifiers' behavioral models in the context of the adaptive model coefficients' identification. The forward twin-nonlinear two-box (TNTB) model is compared to the memory polynomial and orthogonal memory polynomial models. The study, performed using measured data of a Doherty power amplifier prototype driven by multi-carrier signals, highlights the complexity reduction provided by the TNTB model in comparison with the two other models. The results show the superiority of the TNTB model in the context of adaptive parameter-estimation as it leads to better normalized mean squared error while requiring a substantially lower number of parameters. Furthermore, the TNTB model requires less parameters for its identification, and thus less power consumption for its estimation. This makes this model suitable for implementation in energy efficient green communication systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RLS算法的功率放大器多项式模型辨识的比较分析
本文在自适应模型系数辨识的背景下,研究了射频功率放大器行为模型的性能。将前向双非线性双盒(TNTB)模型与记忆多项式模型和正交记忆多项式模型进行了比较。该研究使用多载波信号驱动的Doherty功率放大器原型的测量数据进行,与其他两种模型相比,突出了TNTB模型提供的复杂性降低。结果表明,TNTB模型在自适应参数估计方面具有优势,因为它可以在需要更少的参数的同时获得更好的归一化均方误差。此外,TNTB模型需要较少的参数进行识别,从而减少了其估计的功耗。这使得该模型适合在节能绿色通信系统中实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noise robust speech recognition using parallel model compensation and voice activity detection methods Analysis and design of MIMO antenna for UWB applications based on the super-formula A comparative study up to 1024 bit Euclid's GCD algorithm FPGA implementation and synthesizing On-line measurement of biomass using colloid dielectric probe and open-ended cell. Determination of the aggregation threshold Classification of ECG signals of normal and abnormal subjects using common spatial pattern
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1