3D Brain MRI Segmentation using Deep Neural Network

Ambily N, S. K
{"title":"3D Brain MRI Segmentation using Deep Neural Network","authors":"Ambily N, S. K","doi":"10.1109/ICCC57789.2023.10165167","DOIUrl":null,"url":null,"abstract":"Magnetic Resonance Images (MRI) have been utilized by radiation oncologists to identify the size of tumours within the brain.The accurate identification of brain tumours from 3D MRI images is essential for proper diagnosis. Our proposed model introduces a network capable of segmenting 3D images using sparsely labeled data. This network is an enhanced version of the u-net architecture with attention network and utilizes 3D operations, without the need for a pre-trained network. The effectiveness of this approach was evaluated on the well-known BraTS 2018 brain dataset and achieved a Dice Similarity Coefficient score of (0.95, 0.89, 0.95) for the complete, core, and enhancing regions, respectively","PeriodicalId":192909,"journal":{"name":"2023 International Conference on Control, Communication and Computing (ICCC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Control, Communication and Computing (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC57789.2023.10165167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic Resonance Images (MRI) have been utilized by radiation oncologists to identify the size of tumours within the brain.The accurate identification of brain tumours from 3D MRI images is essential for proper diagnosis. Our proposed model introduces a network capable of segmenting 3D images using sparsely labeled data. This network is an enhanced version of the u-net architecture with attention network and utilizes 3D operations, without the need for a pre-trained network. The effectiveness of this approach was evaluated on the well-known BraTS 2018 brain dataset and achieved a Dice Similarity Coefficient score of (0.95, 0.89, 0.95) for the complete, core, and enhancing regions, respectively
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的三维脑MRI分割
磁共振成像(MRI)已经被放射肿瘤学家用来确定大脑内肿瘤的大小。从三维MRI图像中准确识别脑肿瘤对于正确诊断至关重要。我们提出的模型引入了一个能够使用稀疏标记数据分割3D图像的网络。该网络是u-net架构的增强版本,具有注意力网络,并利用3D操作,无需预先训练网络。在著名的BraTS 2018大脑数据集上对该方法的有效性进行了评估,并在完整区、核心区和增强区分别获得了0.95、0.89和0.95的Dice相似系数得分
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Approach for Mixed type Wafer Defect Pattern Recognition by ResNet Architecture A Review on Electromagnetic Metamaterial Absorbers A Review on Underwater Image Enhancement Techniques Review on Video Super Resolution: Methods and Metrics Denoising Autoencoder for the Removal of Noise in Brain MR Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1