Non-Regularized Reconstruction of Magnetic Moment Distribution of Magnetic Nanoparticles using Barnacles Mating Optimizer

M. M. Saari, M. Sulaiman, N. A. C. Lah, M. R. Daud, T. Kiwa
{"title":"Non-Regularized Reconstruction of Magnetic Moment Distribution of Magnetic Nanoparticles using Barnacles Mating Optimizer","authors":"M. M. Saari, M. Sulaiman, N. A. C. Lah, M. R. Daud, T. Kiwa","doi":"10.1109/ICSSE58758.2023.10227174","DOIUrl":null,"url":null,"abstract":"Core size estimation of magnetic nanoparticles (MNPs) using magnetization curves has been reliably utilized to obtain a fast and simple size estimation technique compared to transmission electron microscopy. This estimation technique involves solving the inverse problem of the magnetization curve. However, conventional methods, such as the singular value decomposition (SVD) or non-negative least squares (NNLS) algorithms, require a regularization threshold to mitigate the overfitting issues of an ill-conditioned problem. This prior information on the regularization requirement may lead to inaccurate magnetic moment reconstruction if the regularization degree is high due to broad distributions of the reconstructed magnetic moment. This research proposes a non-regularized reconstruction technique of magnetic moment distribution using the recent machine learning technique of the Barnacles Mating Optimizer (BMO) algorithm. A simulated magnetization curve of unimodal moment distributions from 1 mT to 1 T is used to minimize a model-free magnetic moment distribution. A reconstruction comparison among the BMO, Particle Swarm (PSO), Genetic Algorithm (GA), Sine Cosine Algorithm (SCA) optimizers, and NNLS method is presented. The magnetic moment reconstruction using the BMO algorithm shows significantly less noise and smooth distribution compared to the PSO and GA algorithms with fewer computation times. Furthermore, the constructed peaks’ position matches the original distribution and shows comparable performance with the conventional NNLS algorithm.","PeriodicalId":280745,"journal":{"name":"2023 International Conference on System Science and Engineering (ICSSE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE58758.2023.10227174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Core size estimation of magnetic nanoparticles (MNPs) using magnetization curves has been reliably utilized to obtain a fast and simple size estimation technique compared to transmission electron microscopy. This estimation technique involves solving the inverse problem of the magnetization curve. However, conventional methods, such as the singular value decomposition (SVD) or non-negative least squares (NNLS) algorithms, require a regularization threshold to mitigate the overfitting issues of an ill-conditioned problem. This prior information on the regularization requirement may lead to inaccurate magnetic moment reconstruction if the regularization degree is high due to broad distributions of the reconstructed magnetic moment. This research proposes a non-regularized reconstruction technique of magnetic moment distribution using the recent machine learning technique of the Barnacles Mating Optimizer (BMO) algorithm. A simulated magnetization curve of unimodal moment distributions from 1 mT to 1 T is used to minimize a model-free magnetic moment distribution. A reconstruction comparison among the BMO, Particle Swarm (PSO), Genetic Algorithm (GA), Sine Cosine Algorithm (SCA) optimizers, and NNLS method is presented. The magnetic moment reconstruction using the BMO algorithm shows significantly less noise and smooth distribution compared to the PSO and GA algorithms with fewer computation times. Furthermore, the constructed peaks’ position matches the original distribution and shows comparable performance with the conventional NNLS algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于藤壶配对优化器的磁性纳米粒子磁矩分布非正则化重构
与透射电镜相比,利用磁化曲线估算磁性纳米颗粒(MNPs)的核心尺寸是一种快速、简单的估算技术。这种估计技术涉及求解磁化曲线的逆问题。然而,传统的方法,如奇异值分解(SVD)或非负最小二乘(NNLS)算法,需要一个正则化阈值来减轻病态问题的过拟合问题。如果重构磁矩的正则化程度较高,由于重构磁矩的分布较广,这些关于正则化要求的先验信息可能导致重构磁矩不准确。本研究利用Barnacles配对优化器(BMO)算法的最新机器学习技术,提出了一种磁矩分布的非正则化重建技术。利用1 mT至1 T单峰磁矩分布的模拟磁化曲线来最小化无模型磁矩分布。对BMO、粒子群算法(PSO)、遗传算法(GA)、正弦余弦算法(SCA)优化器和NNLS方法进行了重构比较。与粒子群算法和遗传算法相比,基于BMO算法的磁矩重构噪声更小,分布更平滑,计算次数更少。此外,构造的峰值位置与原始分布相匹配,与传统的NNLS算法具有相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Q-Network (DQN) Approach for Automatic Vehicles Applied in the Intelligent Transportation System (ITS) Improvement in Proportional Energy Sharing and DC Bus Voltage Restoring for DC Microgrid in the Islanded Operation Mode A New Buck-Boost Converter Structure With Improved Efficiency Performance of Energy Harvesting Aided Multi-hop Mobile Relay Networks With and Without Using Cooperative Communication A New Novel of Prescribed Optimal Control and Its Application for Smart Damping System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1