{"title":"Flux Reversal Machine Design","authors":"Yuting Gao, Yang Liu","doi":"10.5772/INTECHOPEN.92428","DOIUrl":null,"url":null,"abstract":"Flux reversal permanent magnet machines (FRPMMs) have a simple reluctance rotor and a stator with armature windings and permanent magnets (PMs). Due to the high torque density and high efficiency of FRPMMs, they have been widely used in many applications such as electric vehicle, wind power generation, etc. However, the general design method of FRPMMs has not been established in books. Therefore, this chapter will focus on introducing an analytical design method, which allows for fast design of FRPMMs. First of all, the analytical sizing equations are deduced based on a magneto motive force (MMF)-permeance model. After that, the effects of some key performances including average torque, pulsating torque, power factor, and PM demagnetization are analyzed. Moreover, the feasible slot-pole combinations are summarized and the corresponding winding type of each combination is recommended in order to maximize the output torque. Besides, the detailed geometric design of stator and rotor are presented. Finally, a case study is presented to help readers better understand the introduced design methodology.","PeriodicalId":106471,"journal":{"name":"Direct Torque Control Strategies of Electrical Machines","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Direct Torque Control Strategies of Electrical Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.92428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Flux reversal permanent magnet machines (FRPMMs) have a simple reluctance rotor and a stator with armature windings and permanent magnets (PMs). Due to the high torque density and high efficiency of FRPMMs, they have been widely used in many applications such as electric vehicle, wind power generation, etc. However, the general design method of FRPMMs has not been established in books. Therefore, this chapter will focus on introducing an analytical design method, which allows for fast design of FRPMMs. First of all, the analytical sizing equations are deduced based on a magneto motive force (MMF)-permeance model. After that, the effects of some key performances including average torque, pulsating torque, power factor, and PM demagnetization are analyzed. Moreover, the feasible slot-pole combinations are summarized and the corresponding winding type of each combination is recommended in order to maximize the output torque. Besides, the detailed geometric design of stator and rotor are presented. Finally, a case study is presented to help readers better understand the introduced design methodology.