{"title":"An Approximate-Computing-Based Adaptive Equalizer for Polarization Mode Dispersion","authors":"Liyu Lin, Junhui Wang, Xiaoyang Zeng, Yun Chen","doi":"10.1109/APCCAS55924.2022.10090404","DOIUrl":null,"url":null,"abstract":"Computational complexity is the most significant defect of coherent optical communication, which consumes a large area and leads to high power consumption, especially for the adaptive filter used for polarization mode dispersion (PMD). In this paper, we implement a 9-tap intro-polarization and 1-tap inter-polarization equalizer, which reduces 34.4% multiplication of the conventional structure. Besides, we proposed an approximate multiplier to save 44.6% full adder. Under the QPSK modulation, the proposed equalizer has a throughput of 114Gb/s and a power of 463mW at 1.786GHz. Synthesis shows that the area of the proposed 16-way parallel adaptive equalizer is 0.365mm2 with a 28 nm process, which has an improvement of 27.86% in area, and 37.88% in energy efficiency to the fix-point structure.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"369 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Computational complexity is the most significant defect of coherent optical communication, which consumes a large area and leads to high power consumption, especially for the adaptive filter used for polarization mode dispersion (PMD). In this paper, we implement a 9-tap intro-polarization and 1-tap inter-polarization equalizer, which reduces 34.4% multiplication of the conventional structure. Besides, we proposed an approximate multiplier to save 44.6% full adder. Under the QPSK modulation, the proposed equalizer has a throughput of 114Gb/s and a power of 463mW at 1.786GHz. Synthesis shows that the area of the proposed 16-way parallel adaptive equalizer is 0.365mm2 with a 28 nm process, which has an improvement of 27.86% in area, and 37.88% in energy efficiency to the fix-point structure.