Multidimensional Data-driven Load Identification Device Based on CS5463 Module

Ling Xiang, Wu Wancheng, Zhang Xu, Liu Yilong, Dai Yongzheng
{"title":"Multidimensional Data-driven Load Identification Device Based on CS5463 Module","authors":"Ling Xiang, Wu Wancheng, Zhang Xu, Liu Yilong, Dai Yongzheng","doi":"10.1109/CEEPE55110.2022.9783260","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a device for analyzing and identifying electrical appliances, which takes the CS5463 module as the core and STM32F407 microcontroller as the control center. This device can collect the multi-dimensional electrical parameters of the measured load, such as voltage, current, harmonic content, and power. Based on the collected data, we can analyze the electrical characteristics of the load in different states, with algorithms such as CUSUM based on compound windows and wavelet analysis. Finally, using the comprehensive use of the power factor method, table look-up method, and direct discrimination method, we can realize the identification of the types of electrical appliances in the state of multiple electrical appliances coupling.","PeriodicalId":118143,"journal":{"name":"2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEPE55110.2022.9783260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we introduce a device for analyzing and identifying electrical appliances, which takes the CS5463 module as the core and STM32F407 microcontroller as the control center. This device can collect the multi-dimensional electrical parameters of the measured load, such as voltage, current, harmonic content, and power. Based on the collected data, we can analyze the electrical characteristics of the load in different states, with algorithms such as CUSUM based on compound windows and wavelet analysis. Finally, using the comprehensive use of the power factor method, table look-up method, and direct discrimination method, we can realize the identification of the types of electrical appliances in the state of multiple electrical appliances coupling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CS5463模块的多维数据驱动载荷识别装置
本文介绍了一种以CS5463模块为核心,以STM32F407单片机为控制中心的电器分析识别装置。该装置可以采集被测负载的电压、电流、谐波含量、功率等多维电参数。根据采集到的数据,利用基于复合窗的CUSUM算法和小波分析等算法分析负载在不同状态下的电特性。最后综合运用功率因数法、查表法、直接判别法,实现多电器耦合状态下的电器种类识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Hybrid Configuration of Photovoltaic and Storage Distribution Network Considering the Power Demand of Important Loads Optimal Dispatch of Novel Power System Considering Tail Gas Power Generation and Fluctuations of Tail Gas Source Study on Evolution Path of Shandong Power Grid Based on "Carbon Neutrality" Goal Thermal State Prediction of Transformers Based on ISSA-LSTM Study on Bird Dropping Flashover Prevention Characteristics of AC Line in Areas Above 4000 m
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1