S. Denbaars, T. Katona, P. Cantu, A. Hanlon, S. Keller, M. Schmidt, T. Margalith, M. Pattisson, C. Moe, J. Speck, S. Nakamura
{"title":"GaN based high brightness LEDs and UV LEDs","authors":"S. Denbaars, T. Katona, P. Cantu, A. Hanlon, S. Keller, M. Schmidt, T. Margalith, M. Pattisson, C. Moe, J. Speck, S. Nakamura","doi":"10.1109/IEDM.2003.1269304","DOIUrl":null,"url":null,"abstract":"This talk summarizes the important materials and device results in gallium nitride based light emitter technology. GaN has emerged as the most promising material for high brightness LEDs with colors ranging from UV to blue, green, and white. Recent progress on ultra-violet (UV) emitting LEDs using AlGaN single quantum wells indicates wavelengths as short as 292 nm are achievable. UV LEDs are of great interest for solid state white lighting due to the high conversion efficiencies of typical phosphors in the UV spectrum. This paper focuses on recent progress in improving the properties of UV LEDs.","PeriodicalId":344286,"journal":{"name":"IEEE International Electron Devices Meeting 2003","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Electron Devices Meeting 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2003.1269304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This talk summarizes the important materials and device results in gallium nitride based light emitter technology. GaN has emerged as the most promising material for high brightness LEDs with colors ranging from UV to blue, green, and white. Recent progress on ultra-violet (UV) emitting LEDs using AlGaN single quantum wells indicates wavelengths as short as 292 nm are achievable. UV LEDs are of great interest for solid state white lighting due to the high conversion efficiencies of typical phosphors in the UV spectrum. This paper focuses on recent progress in improving the properties of UV LEDs.