Deepak Kadetotad, Visar Berisha, C. Chakrabarti, Jae-sun Seo
{"title":"A 8.93-TOPS/W LSTM Recurrent Neural Network Accelerator Featuring Hierarchical Coarse-Grain Sparsity With All Parameters Stored On-Chip","authors":"Deepak Kadetotad, Visar Berisha, C. Chakrabarti, Jae-sun Seo","doi":"10.1109/ESSCIRC.2019.8902809","DOIUrl":null,"url":null,"abstract":"Long short-term memory (LSTM) networks are widely used for speech applications but pose difficulties for efficient implementation on hardware due to large weight storage requirements. We present an energy-efficient LSTM recurrent neural network (RNN) accelerator, featuring an algorithm-hardware co-optimized memory compression technique called hierarchical coarse-grain sparsity (HCGS). Aided by HCGS-based block-wise recursive weight compression, we demonstrate LSTM networks with up to 16× fewer weights while achieving minimal accuracy loss. The prototype chip fabricated in 65-nm LP CMOS achieves 8.93/7.22 TOPS/W for 2-/3-layer LSTM RNNs trained with HCGS for TIMIT/TED-LIUM corpora.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Long short-term memory (LSTM) networks are widely used for speech applications but pose difficulties for efficient implementation on hardware due to large weight storage requirements. We present an energy-efficient LSTM recurrent neural network (RNN) accelerator, featuring an algorithm-hardware co-optimized memory compression technique called hierarchical coarse-grain sparsity (HCGS). Aided by HCGS-based block-wise recursive weight compression, we demonstrate LSTM networks with up to 16× fewer weights while achieving minimal accuracy loss. The prototype chip fabricated in 65-nm LP CMOS achieves 8.93/7.22 TOPS/W for 2-/3-layer LSTM RNNs trained with HCGS for TIMIT/TED-LIUM corpora.