Normal and Murmur Heart Sound Classification Using Linear Predictive Coding and k-Nearest Neighbor Methods

A. Sofwan, Imam Santoso, Himawan Pradipta, M. Arfan, Ajub Ajulian Zahra M
{"title":"Normal and Murmur Heart Sound Classification Using Linear Predictive Coding and k-Nearest Neighbor Methods","authors":"A. Sofwan, Imam Santoso, Himawan Pradipta, M. Arfan, Ajub Ajulian Zahra M","doi":"10.1109/ICICoS48119.2019.8982393","DOIUrl":null,"url":null,"abstract":"Heart rate sounds have a special pattern that is in accordance with a person's heart condition. An abnormal heart will cause a distinctive sound called a murmur. Murmurs caused by various things that indicate a person's condition. Through a Phonocardiogram (PCG), it can be seen a person's heart rate signal wave. Normal heartbeat and murmurs have a distinctive pattern, so that through this pattern it can be detected a person's heart defects. This study will make a classification program that will sense normal heart sounds and murmurs. This program uses feature extraction methods using LPC (Linear Predictive Coding) and classification using k-NN (k-Nearest Neighbor) to identify these 2 heart conditions. The data that will be used as a database consists of samples of normal heart rate sounds and murmurs, and also data obtained from the heart rate detection device in the. wav, mono format. The system for detecting heart abnormalities consists of three main parts, namely: recording heart rate sounds, feature extraction using LPC with order 10, and feature lines using k-NN with 3 types of distances and variations of k. From the results of testing with these types of distance, the obtained average accuracy value of Chebyshev, City Block, and Euclidean are 96.67, 91.67, and 93.33 percent, respectively. In addition, the value of k equal 3 is the most optimal value of k with an average level of 96.67 percent.","PeriodicalId":105407,"journal":{"name":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICoS48119.2019.8982393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Heart rate sounds have a special pattern that is in accordance with a person's heart condition. An abnormal heart will cause a distinctive sound called a murmur. Murmurs caused by various things that indicate a person's condition. Through a Phonocardiogram (PCG), it can be seen a person's heart rate signal wave. Normal heartbeat and murmurs have a distinctive pattern, so that through this pattern it can be detected a person's heart defects. This study will make a classification program that will sense normal heart sounds and murmurs. This program uses feature extraction methods using LPC (Linear Predictive Coding) and classification using k-NN (k-Nearest Neighbor) to identify these 2 heart conditions. The data that will be used as a database consists of samples of normal heart rate sounds and murmurs, and also data obtained from the heart rate detection device in the. wav, mono format. The system for detecting heart abnormalities consists of three main parts, namely: recording heart rate sounds, feature extraction using LPC with order 10, and feature lines using k-NN with 3 types of distances and variations of k. From the results of testing with these types of distance, the obtained average accuracy value of Chebyshev, City Block, and Euclidean are 96.67, 91.67, and 93.33 percent, respectively. In addition, the value of k equal 3 is the most optimal value of k with an average level of 96.67 percent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于线性预测编码和k近邻方法的正常心音和杂音分类
心率声音有一种特殊的模式,与人的心脏状况相一致。心脏异常会产生一种特殊的声音,叫做杂音。杂音由各种事物引起的杂音,表明一个人的状况。通过心音图(PCG)可以看到一个人的心率信号波。正常的心跳和杂音有一个独特的模式,因此通过这种模式可以检测出一个人的心脏缺陷。这项研究将制定一个分类程序,以感知正常的心音和杂音。这个程序使用LPC(线性预测编码)的特征提取方法和k-NN (k-最近邻)的分类来识别这两种心脏状况。将用作数据库的数据包括正常心率声音和杂音的样本,以及从心脏中的心率检测设备获得的数据。Wav单声道格式。心脏异常检测系统主要由三部分组成:记录心率声音,使用10阶LPC进行特征提取,使用k- nn进行3种距离和k变化类型的特征线。从这些距离类型的测试结果来看,Chebyshev、City Block和Euclidean的平均准确率分别为96.67、91.67和93.33%。另外,k = 3是k的最优值,平均水平为96.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of GPGPU-Based Brute-Force and Dictionary Attack on SHA-1 Password Hash Ranking of Game Mechanics for Gamification in Mobile Payment Using AHP-TOPSIS: Uses and Gratification Perspective An Assesment of Knowledge Sharing System: SCeLE Universitas Indonesia Improved Line Operator for Retinal Blood Vessel Segmentation Classification of Abnormality in Chest X-Ray Images by Transfer Learning of CheXNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1