Estimation of urban methane concentration from remote sensor data

C. Stadler, V. S. Fusé, A. Faramiñán, Santiago Linares, P. Juliarena
{"title":"Estimation of urban methane concentration from remote sensor data","authors":"C. Stadler, V. S. Fusé, A. Faramiñán, Santiago Linares, P. Juliarena","doi":"10.1109/ARGENCON55245.2022.9939822","DOIUrl":null,"url":null,"abstract":"Methane (CH4) is the second more important greenhouse gas (GHG), respecting its potential global warming. Although cities represent only 2% of the global surface, they are responsible for 70% of the GHGs emissions. Thus, it is necessary to study their atmospheric concentration variations to identify the main sources and mitigate their emissions. The main objective of this study is to estimate the CH4 urban concentration using satellite products. To do this, first the atmospheric CH4 concentration was analyzed in 16 sites in the city of Tandil (Argentina) for one year; thus, the observed data could be registered. It was found that in winter and autumn, the concentrations were higher than in summer and spring. Then, the data from Landsat 8 satellite were used to obtain the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST). Linear regression was applied, taking into account the seasonal CH4 concentration as the dependent variable, and the NDVI and LST as the independent variables. The adjusted R2 was 0.53, and the principal variable that affected the CH4 concentration was NDVI, which is related to urbanization. Finally, the mathematical expression from the regression was applied to obtain CH4 urban concentration, which allows us to analyze the temporal and spatial variations.","PeriodicalId":318846,"journal":{"name":"2022 IEEE Biennial Congress of Argentina (ARGENCON)","volume":"09 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Biennial Congress of Argentina (ARGENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARGENCON55245.2022.9939822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Methane (CH4) is the second more important greenhouse gas (GHG), respecting its potential global warming. Although cities represent only 2% of the global surface, they are responsible for 70% of the GHGs emissions. Thus, it is necessary to study their atmospheric concentration variations to identify the main sources and mitigate their emissions. The main objective of this study is to estimate the CH4 urban concentration using satellite products. To do this, first the atmospheric CH4 concentration was analyzed in 16 sites in the city of Tandil (Argentina) for one year; thus, the observed data could be registered. It was found that in winter and autumn, the concentrations were higher than in summer and spring. Then, the data from Landsat 8 satellite were used to obtain the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST). Linear regression was applied, taking into account the seasonal CH4 concentration as the dependent variable, and the NDVI and LST as the independent variables. The adjusted R2 was 0.53, and the principal variable that affected the CH4 concentration was NDVI, which is related to urbanization. Finally, the mathematical expression from the regression was applied to obtain CH4 urban concentration, which allows us to analyze the temporal and spatial variations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用遥感数据估算城市甲烷浓度
鉴于其潜在的全球变暖效应,甲烷(CH4)是第二重要的温室气体(GHG)。虽然城市只占全球地表面积的2%,但它们排放的温室气体却占全球总量的70%。因此,有必要研究它们的大气浓度变化,以确定其主要来源并减轻其排放。本研究的主要目的是利用卫星产品估算城市CH4浓度。为此,首先对阿根廷坦迪尔市16个地点的大气CH4浓度进行了为期一年的分析;这样就可以对观测数据进行登记。结果表明,冬季和秋季的浓度高于夏季和春季。然后,利用Landsat 8卫星数据获取归一化植被指数(NDVI)和地表温度(LST)。采用线性回归方法,以季节CH4浓度为因变量,NDVI和LST为自变量。调整后的R2为0.53,影响CH4浓度的主要变量为NDVI, NDVI与城市化有关。最后,将回归得到的数学表达式应用于城市CH4浓度,分析城市CH4浓度的时空变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Propuestas de normativas para la disposición final de equipamientos de un parque eólico al finalizar su vida productiva Proyecto Laboratorios remotos en carreras de ingeniería de la Universidad Nacional de Tucumán Control de un convertidor DC-DC con puentes duales activos para adaptar niveles de tensión en microrredes de DC usando linealización por realimentación Las Competencias Transversales en Ingeniería. El Seminario Taller Como Herramienta Metodológica Procedimiento de sintonizado de tanques resonantes LCC para carga inalámbrica de vehículos eléctricos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1