{"title":"Surrogate-based test for Granger causality","authors":"T. Gautama, M. Hulle","doi":"10.1109/NNSP.2003.1318079","DOIUrl":null,"url":null,"abstract":"An approach for testing the presence of Granger causality between two time series is proposed. The residue of the destination signal after self-prediction is computed, after which a cross-prediction of the source signal over this residue is examined. In the absence of causality, there should be no cross-predictive power, due to which the performance of the cross-prediction system can be used as an indication of causality. The proposed approach uses the surrogate data method, and implements the self- and cross-prediction systems as feedforward neural networks. It is tested on synthetic examples, and a sensitivity analysis demonstrates the robustness of the approach.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"8 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
An approach for testing the presence of Granger causality between two time series is proposed. The residue of the destination signal after self-prediction is computed, after which a cross-prediction of the source signal over this residue is examined. In the absence of causality, there should be no cross-predictive power, due to which the performance of the cross-prediction system can be used as an indication of causality. The proposed approach uses the surrogate data method, and implements the self- and cross-prediction systems as feedforward neural networks. It is tested on synthetic examples, and a sensitivity analysis demonstrates the robustness of the approach.