Fast error whitening algorithms for system identification and control

Y. Rao, Deniz Erdoğmuş, G. Y. Rao, J. Príncipe
{"title":"Fast error whitening algorithms for system identification and control","authors":"Y. Rao, Deniz Erdoğmuş, G. Y. Rao, J. Príncipe","doi":"10.1109/NNSP.2003.1318030","DOIUrl":null,"url":null,"abstract":"Linear system identification with noisy inputs is a critical problem in signal processing and control. Conventional techniques based on the mean squared-error (MSE) criterion can at best provide a biased estimate of the unknown system being modeled. Recently, we proposed a new criterion called the error whitening criterion (EWC) to solve the problem of linear parameter estimation in the presence of additive white noise. In this paper, we present a fixed-point type algorithm with O(N/sup 2/) complexity for EWC, called the recursive error whitening (REW) algorithm. We would also show that the EWC solution could be solved using the computational principles of total least squares (TLS). A novel EWC-TLS algorithm with O(N/sup 2/) complexity is derived. We will then apply the EWC methods for adaptive inverse control and show the superiority over existing methods.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Linear system identification with noisy inputs is a critical problem in signal processing and control. Conventional techniques based on the mean squared-error (MSE) criterion can at best provide a biased estimate of the unknown system being modeled. Recently, we proposed a new criterion called the error whitening criterion (EWC) to solve the problem of linear parameter estimation in the presence of additive white noise. In this paper, we present a fixed-point type algorithm with O(N/sup 2/) complexity for EWC, called the recursive error whitening (REW) algorithm. We would also show that the EWC solution could be solved using the computational principles of total least squares (TLS). A novel EWC-TLS algorithm with O(N/sup 2/) complexity is derived. We will then apply the EWC methods for adaptive inverse control and show the superiority over existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于系统识别和控制的快速错误白化算法
具有噪声输入的线性系统辨识是信号处理和控制中的一个关键问题。基于均方误差(MSE)准则的传统方法最多只能对被建模的未知系统提供有偏估计。为了解决存在加性白噪声的线性参数估计问题,本文提出了一种新的误差白化准则(EWC)。本文提出了一种复杂度为0 (N/sup 2/)的EWC不动点算法,称为递归误差白化(REW)算法。我们还将证明EWC解可以使用总最小二乘(TLS)的计算原理来求解。提出了一种复杂度为0 (N/sup 2/)的EWC-TLS算法。然后,我们将EWC方法应用于自适应逆控制,并展示其优于现有方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes Neuro-variational inversion of ocean color imagery Correlation-based feature detection using pulsed neural networks Computed simultaneous imaging of multiple biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1