Deep Reinforcement Learning-based Interconnection Design for 3D X-Point Array Structure Considering Signal Integrity

Kyungjune Son, Minsu Kim, Hyunwook Park, Shinyoung Park, Gapyeol Park, Daewhan Lho, Seoungguk Kim, Taein Shin, Keeyoung Son, Keunwoo Kim, Joungho Kim
{"title":"Deep Reinforcement Learning-based Interconnection Design for 3D X-Point Array Structure Considering Signal Integrity","authors":"Kyungjune Son, Minsu Kim, Hyunwook Park, Shinyoung Park, Gapyeol Park, Daewhan Lho, Seoungguk Kim, Taein Shin, Keeyoung Son, Keunwoo Kim, Joungho Kim","doi":"10.1109/EDAPS50281.2020.9312891","DOIUrl":null,"url":null,"abstract":"In this paper, we, for the first time, proposed the Reinforcement Learning (RL) based interconnection design for 3D X-Point array structure considering crosstalk and IR drop. We applied the Markov Decision Process (MDP) to correspond to finding the optimal interconnection design problem to RL problem. We defined interconnection state to the vector, design to the action and the number of bits, crosstalk and IR drop are considered as the reward. The Proximal Policy Optimization (PPO) and Long Short-Term Memory (LSTM) are used to RL algorithms. The proposed interconnection design model is well trained and shows convergence of reward score in 16×16, 32×32 and 64×64 cases. We verified that the trained model finds out optimal interconnection design considering both memory size and signal integrity issues.","PeriodicalId":137699,"journal":{"name":"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS50281.2020.9312891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we, for the first time, proposed the Reinforcement Learning (RL) based interconnection design for 3D X-Point array structure considering crosstalk and IR drop. We applied the Markov Decision Process (MDP) to correspond to finding the optimal interconnection design problem to RL problem. We defined interconnection state to the vector, design to the action and the number of bits, crosstalk and IR drop are considered as the reward. The Proximal Policy Optimization (PPO) and Long Short-Term Memory (LSTM) are used to RL algorithms. The proposed interconnection design model is well trained and shows convergence of reward score in 16×16, 32×32 and 64×64 cases. We verified that the trained model finds out optimal interconnection design considering both memory size and signal integrity issues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑信号完整性的三维x点阵列结构深度强化学习互连设计
在本文中,我们首次提出了基于强化学习(RL)的三维x点阵列结构互连设计,考虑了串扰和红外下降。我们将马尔可夫决策过程(MDP)应用于寻找最优互连设计问题和强化学习问题。我们将互连状态定义为矢量,设计为动作和比特数,并考虑串扰和红外下降作为奖励。在RL算法中引入了近端策略优化(PPO)和长短期记忆(LSTM)。本文提出的互联设计模型训练良好,在16×16、32×32和64×64三种情况下均表现出奖励分数的收敛性。我们验证了训练模型在考虑内存大小和信号完整性问题的情况下找到了最佳互连设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gaussian Process surrogate model for variability analysis of RF circuits Power Distribution Network Optimization for On-Die Regulator with Laplace Transform Technique Multiphysics challenges with Heterogeneous Integrated Voltage Regulator based Power Delivery Architectures Sub-picosecond Skew Matching On Die SSN Methodology for High Speed IO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1