{"title":"Accurate parametric steady state analysis and design tool for DC-DC power converters","authors":"Mohammad Daryaei, M. Ebrahimi, S. A. Khajehoddin","doi":"10.1109/APEC.2016.7468228","DOIUrl":null,"url":null,"abstract":"Accurate large signal analysis and modeling of Power Electronics converters are essential for achieving high performance and reliable designs. Converter topologies with large signal variations are conventionally analyzed using numerical methods, averaged or inaccurate analyses. In this paper, a mathematical theorem based on Laplace transform is developed to derive the steady state response of periodic signals with a switching input signal. It is shown that the proposed methodology provides accurate and parametric analysis tool for dc-dc power converters specially for resonant converters and has many applications in design and analysis of the converters and their control systems. The proposed method is used to analyze and model a few power circuit including full bridge Series Resonant Converter (SRC) topology where both CCM and DCM operating modes are analyzed. It is observed that the proposed analysis approach gives great insight and simplifies converter design. The proposed analysis and modeling approach is also validated by simulations and experimental results.","PeriodicalId":143091,"journal":{"name":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2016.7468228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Accurate large signal analysis and modeling of Power Electronics converters are essential for achieving high performance and reliable designs. Converter topologies with large signal variations are conventionally analyzed using numerical methods, averaged or inaccurate analyses. In this paper, a mathematical theorem based on Laplace transform is developed to derive the steady state response of periodic signals with a switching input signal. It is shown that the proposed methodology provides accurate and parametric analysis tool for dc-dc power converters specially for resonant converters and has many applications in design and analysis of the converters and their control systems. The proposed method is used to analyze and model a few power circuit including full bridge Series Resonant Converter (SRC) topology where both CCM and DCM operating modes are analyzed. It is observed that the proposed analysis approach gives great insight and simplifies converter design. The proposed analysis and modeling approach is also validated by simulations and experimental results.