A chaotically injected timing technique for ring-based oscillators

Yo-Hao Tu, Kuo-Hsing Cheng, Wei-Ren Wang, Jen-Chieh Liu, Hong-Yi Huang
{"title":"A chaotically injected timing technique for ring-based oscillators","authors":"Yo-Hao Tu, Kuo-Hsing Cheng, Wei-Ren Wang, Jen-Chieh Liu, Hong-Yi Huang","doi":"10.1109/DDECS.2016.7482467","DOIUrl":null,"url":null,"abstract":"This work proposes a chaotically injected timing technique (CITT) for ring-based oscillators. The quality of clock signal affects the normal motion of the entire circuit. In many oscillators and clock generators show the performance comparison through jitters and phase noise. The injection-locked ring-based oscillators have advantages of jitters, phase noise and area cost. However, there is a contingent effect, injected spur. By adopting the CITT, the injected phase pattern can be randomized and break the periodicity of injected signal to solve the high injected spur effect. The CITT can reduce the level of phase noise by 29 dB compared to the free-run oscillator. The experiment chip of the proposed CITT is implemented by 90 nm CMOS process. The measured output frequency is 5 GHz at supply voltage of 1 V. The level of phase noise is -99 dBc at frequency offset of 1 MHz under injected frequency of 1 GHz.","PeriodicalId":404733,"journal":{"name":"2016 IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2016.7482467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work proposes a chaotically injected timing technique (CITT) for ring-based oscillators. The quality of clock signal affects the normal motion of the entire circuit. In many oscillators and clock generators show the performance comparison through jitters and phase noise. The injection-locked ring-based oscillators have advantages of jitters, phase noise and area cost. However, there is a contingent effect, injected spur. By adopting the CITT, the injected phase pattern can be randomized and break the periodicity of injected signal to solve the high injected spur effect. The CITT can reduce the level of phase noise by 29 dB compared to the free-run oscillator. The experiment chip of the proposed CITT is implemented by 90 nm CMOS process. The measured output frequency is 5 GHz at supply voltage of 1 V. The level of phase noise is -99 dBc at frequency offset of 1 MHz under injected frequency of 1 GHz.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环基振荡器的混沌注入定时技术
本文提出了一种用于环基振荡器的混沌注入定时技术(CITT)。时钟信号的质量直接影响整个电路的正常运行。在许多振荡器和时钟发生器中,通过抖动和相位噪声进行性能比较。锁注入环形振荡器具有抖动、相位噪声和面积成本等优点。然而,有一个偶然的影响,注入刺激。采用CITT可以实现注入相位图的随机化,打破注入信号的周期性,解决了高注入杂散效应。与自由运行振荡器相比,CITT可以将相位噪声水平降低29 dB。该实验芯片采用90 nm CMOS工艺实现。在电源电压为1v时,测量输出频率为5ghz。注入频率为1ghz,频率偏移为1mhz时相位噪声为-99 dBc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical receivers in 0.35 μm BiCMOS for heterogeneous 3D integration A rule-based approach for minimizing power dissipation of digital circuits Early-stage verification of power-management specification in low-power systems design Integer-N phase locked loop for bluetooth receiver in CMOS 130 nm technology Gm-C filter with automatic calibration scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1